Using JavaScript to Adjust Saturation and Brightness of RGB Colors

Lately I’ve been taking a look into designing with color (or “colour” as we spell it where I’m from in New Zealand). Looking at Adam Wathan and Steve Schroger’s advice on the subject, we find that we’re going to need more than just five nice looking hex codes from a color palette generator when building an application. We’re going to need a lot of grays and a few primary colors. From these primary colors we’ll want a variety of levels of brightness and saturation.

I’ve mainly been using hex codes or RGB colors when developing applications and I’ve found I get slowed down by trying to work out different levels of lightness and saturation from a single hue.  So, to save you from getting RSI by carefully moving the color picker in VS Code, or continually opening hexcolortool, let’s look at some code to help you manipulate those colors.

HSL values

An effective way to write web colors is to use HSL values, especially if you plan to alter the colors manually. HSL stands for hue, saturation, lightness. Using HSL, you can declare your hue as a number from 0 to 360. Then you can note down a percentage for saturation and lightness respectively. For instance:

div {
  background-color: hsl(155, 30%, 80%);
}

This will give you a light, muted, mint green color. What if we needed to throw some dark text over this div? We could use a color close to black, but consistent with the background. For example, we can grab the same HSL values and pull the lightness down to 5%: 

div {
  background-color: hsl(155, 30%, 80%);
  color: hsl(155, 30%, 5%);
}

Nice. Now we have text that is very close to black, but looks a bit more natural, and is tied to its background. But what if this wasn’t a paragraph of text, but a call-to-action button instead? We can draw some more attention by ramping up the saturation and lowering the lightness a little on the background:

.call-to-action {
  background-color: hsl(155, 80%, 60%);
  color: hsl(155, 30%, 5%);
}

Or, what if there was some text that wasn’t as important? We could turn back up the brightness on the text, and lower the saturation. This takes away some of the contrast and allows this less important text to fade into the background a bit more. That said, we need to be careful to keep a high enough contrast for accessibility and readability, so let’s lighten the background again:

div {
  background-color: hsl(155, 30%, 80%);
  color: hsl(155, 30%, 5%);
}

.lessimportant {
  color: hsl(155, 15%, 40%);
}

HSL values are supported in all major browsers and they are a superior way of defining colors compared to RGB. This is because they allow you to be more declarative with the hue, saturation and lightness of a color.

But, what if you’ve already committed to using RGB values? Or you get an email from your boss asking “is this going to work on IE 8?”

Libraries

There are a lot of great color libraries out there that are able to convert HSL values back into hex codes or RGB colors. Most of them also have a variety of manipulation functions to help build a color scheme.

Here is a list of some libraries I know:

  • If converting between formats is a problem, try colvertize by Philipp Mildenberger. It’s a lightweight library providing a lot of conversion methods and a few manipulation methods.
  • Then we have color, maintained by Josh Junon. This allows you to declare, process and extract colors using a fluent interface. It provides a variety of conversions and manipulation methods.
  • Another one is TinyColor by Brian Grinstead over at Mozilla, which can handle a whole lot of input types as well as utility functions. It also provides a few functions to help generate color schemes.

Also here is a great CSS-Tricks article on converting color formats.

Colour Grid Tool

Another option is you can try out a color tool I built called Colour Grid. To quote Refactoring UI, “As tempting as it is, you can’t rely purely on math to craft the perfect color palette.”

Naturally, after reading this, I built a React app to mathematically craft a color palette. Okay, it won’t solve all your problems, but it might start you off with some options. The app will create 100 different levels of saturation and lightness based the hue you select. You can either click a grid item to copy the hex code, or copy a color as a CSS custom property from a text area at the end. This could be something to try if you need a quick way to get variations from one or two hues. 

Here are some techniques I learned for processing RGB colors as well for if you are using RGB colors and need a way to transform them.

How to find the lightness of an RGB color

Disclaimer: This technique does not account for the intrinsic value of a hue. The intrinsic value of a hue is its inherent brightness before you’ve started adding any black or white. It’s illustrated by the fact pure yellow looks a lot brighter to us than a pure purple.

This technique produces the level of lightness based on a programmatic measure of how much white or black is mixed in. The perceived brightness is affected by more than this measure so remember to also use your eyes to judge the level of light you need.

The level of lightness of an RGB color can be worked out by finding the average of the highest and lowest of the RGB values, then dividing this by 255 (the middle color does not affect the lightness).

This will give you a decimal between zero and one representing the lightness. Here is a JavaScript function for this:

function getLightnessOfRGB(rgbString) {
  // First convert to an array of integers by removing the whitespace, taking the 3rd char to the 2nd last then splitting by ','
  const rgbIntArray = (rgbString.replace(/ /g, '').slice(4, -1).split(',').map(e => parseInt(e)));


  // Get the highest and lowest out of red green and blue
  const highest = Math.max(...rgbIntArray);
  const lowest = Math.min(...rgbIntArray);


  // Return the average divided by 255
  return (highest + lowest) / 2 / 255;
}

Here’s a CodePen using this function:

How to saturate an RGB color without changing lightness or hue

What can we do with our newfound ability to find the lightness of an RGB? It can help us saturate an RGB color without changing the lightness.

Saturating an RGB comes with a few problems, though:

  • There is no information in the RGB format of a gray color to tell us what the saturated version will look like because gray doesn’t have a hue. So if we’re going to write a function to saturate a color, we need to deal with this case.
  • We can’t actually get to a pure hue unless the color is 50% lightness — anything else will be diluted by either black or white. So we have a choice of whether to keep the same lightness as we saturate the color, or move the color towards 50% lightness to get the most vibrant version. For this example, we’ll keep the same level of lightness.

Let’s start start with the color rgb(205, 228, 219) — a light, muted cyan. To saturate a color we need to increase the difference between the lowest and highest RGB value. This will move it toward a pure hue.

If we want to keep the lightness the same, we’re going to need to increase the highest value and decrease the lowest value by an equal amount. But because the RGB values need to be clamped between 0 and 255, our saturation options will be limited when the color is lighter or darker. This means there is a range of saturation we have available for any given lightness.

Let’s grab the saturation range available for our color. We can work it out by finding the lowest of these two:

  • The difference between the RGB values of a gray with the same lightness as our color, and 255
  • The difference between the RGB values of a gray with the same lightness as our color, and 0 (which is just the gray value itself)

To get a fully gray version of a color, we can grab the end result of the getLightnessOfRGB function from the previous section and multiply it by 255. Then use this number for all three of our RGB values to get a gray that’s the same lightness as our original color. 

Let’s do this now:

// Using the previous "getLightnessOfRGB" function
const grayVal = getLightnessOfRGB('rgb(205, 228, 219)')*255; // 217
// So a gray version of our color would look like rgb(217,217,217);
// Now let's get the saturation range available:
const saturationRange =  Math.round(Math.min(255-grayVal,grayVal)); // 38

Let’s say we want to saturate the color by 50%. To do this  want to increase the highest RGB value and decrease the lowest by 50% of the saturation range. However, this may put us over 255 or under zero, so we need to clamp the change by the minimum of these two values:

  • The difference between the highest RGB value and 255
  • The difference between the lowest RGB value and 0 (which is the value itself)
// Get the maximum change by getting the minimum out of: 
// (255 - the highest value) OR (the lowest value)
const maxChange = Math.min(255-228, 205); // 27


// Now we will be changing our values by the lowest out of:
// (the saturation range * the increase fraction) OR (the maximum change)
const changeAmount = Math.min(saturationRange/0.5, maxChange) // 19

This means we need to add 19 to the highest RGB value (green) and subtract 19 from the lowest RGB value:

const redResult = 205 - 19; // 186
const greenResult= 228 + 19; // 247

What about the third value?

This is where things get a bit more complicated. The middle value’s distance from gray can be worked with the ratio between it and the distance from gray of either of the other two values.

As we move the highest and lowest values further away from gray, the middle value increases/decreases in proportion with them. 

Now let’s get the difference between the highest value and full gray. Then the difference between the middle value and the full gray. Then we’ll get the ratio between these. I’m going to also remove the rounding from working out the gray value to make this more exact:

const grayVal = getLightnessOfRGB('rgb(205, 228, 219)')*255;
const highDiff = grayVal - 228; // -11 subtracting green - the highest value
const midDiff = grayVal - 219; // -2 subtracting blue - the middle value
const middleValueRatio = midDiff / highDiff; // 0.21739130434782608

Then what we need to do is get the difference between our new RGB green value (after we added 19 to it) and the gray value, then multiply this by our ratio. We add this back on to the gray value and that’s our answer for our newly saturated blue:

// 247 is the green value after we applied the saturation transformation
const newBlue = Math.round(grayVal+(247-grayVal)*middleValueRatio); // 223

So after we’ve applied our transformations, we we get an RGB color of rgb(186, 247, 223 — a more vibrant version of the color we started with. But its kept its lightness and hue.

Here are a couple of JavaScript functions that work together to saturate a color by 10%. The second function here returns an array of objects representing the RGB values in order of size. This second function is used in all of the rest of the functions in this article.

If you give it a gray, it will just return the same color:

function saturateByTenth(rgb) {
  const rgbIntArray = (rgb.replace(/ /g, '').slice(4, -1).split(',').map(e => parseInt(e)));
  const grayVal = getLightnessOfRGB(rgb)*255;
  const [lowest,middle,highest] = getLowestMiddleHighest(rgbIntArray);


  if(lowest.val===highest.val){return rgb;}
  
  const saturationRange =  Math.round(Math.min(255-grayVal,grayVal));
  const maxChange = Math.min((255-highest.val),lowest.val);
  const changeAmount = Math.min(saturationRange/10, maxChange);
  const middleValueRatio =(grayVal-middle.val)/(grayVal-highest.val);
  
  const returnArray=[];
  returnArray[highest.index]= Math.round(highest.val+changeAmount);
  returnArray[lowest.index]= Math.round(lowest.val-changeAmount);
  returnArray[middle.index]= Math.round(grayVal+(returnArray[highest.index]-grayVal)*middleValueRatio);
   return (`rgb(${[returnArray].join()})`);
}


function getLowestMiddleHighest(rgbIntArray) {
  let highest = {val:-1,index:-1};
  let lowest = {val:Infinity,index:-1};


  rgbIntArray.map((val,index)=>{
    if(val>highest.val){
      highest = {val:val,index:index};
    }
    if(val<lowest.val){
      lowest = {val:val,index:index};
    }
  });


  if(lowest.index===highest.index){
    lowest.index=highest.index+1;
  }
  
  let middle = {index: (3 - highest.index - lowest.index)};
  middle.val = rgbIntArray[middle.index];
  return [lowest,middle,highest];
}

How to desaturate an RGB Color

If we completely desaturate a color, we’ll end up with a shade of gray. RGB grays will always have three equal RGB values, so we could just use the grayVal from the previous function to make a gray color with the same lightness as any given color.

What if we don’t want to go straight to gray, and only want to slightly desaturate a color? We can do this by reversing the previous example.

Let’s look at another example. If we start with rgb(173, 31, 104), we have a saturated rouge. Let’s grab the decimal measure of lightness and multiply it by 255 to get the gray version:

const grayVal = Math.round(getLightnessOfRGB('rgb(173, 31, 104)') * 255); // 102

This means that if we fully desaturate this color to gray we’re going to end up with rgb(102, 102, 102). Let’s desaturate it by 30%.

First, we need to find the saturation range of the color again:

const saturationRange = Math.round(Math.min(255-grayVal,grayVal)); // 102

To desaturate our color by 30%, we want to move the highest and lowest color by 30% of this range toward full gray. But we also need to clamp the change amount by the distance between either of these colors (the distance will be the same for the highest and lowest), and full gray.

// Get the maximum change by getting the difference between the lowest (green) and the gray value
const maxChange = grayVal-31; // 71
// Now grab the value that represents 30% of our saturation range
const changeAmount = Math.min(saturationRange * 0.3, maxChange) // 30.59999

And add this change amount to the lowest RGB value and subtract it from the highest value: 

const newGreen =Math.Round(31+changeAmount); // 62
const newRed =Math.Round(173-changeAmount); // 142

Then use the same ratio technique as the last function to find the value for the third color:

const highDiff = grayVal - 173; // -71 subtracting red - the highest value
const midDiff = grayVal - 104; // -2 subtracting blue - the middle value
const middleValueRatio = midDiff / highDiff; // 0.02816901408
const newBlue = Math.Round(grayVal+(142.4-grayVal)*middleValueRatio); // 103

So that means the RGB representation of our rouge desaturated by 30% would be rgb(142, 62, 103). The hue and the lightness are exactly the same, but it’s a bit less vibrant.

Here’s a JavaScript function that will desaturate a color by 10%. It’s basically a reverse of the previous function.

function desaturateByTenth(rgb) {
  const rgbIntArray = (rgb.replace(/ /g, '').slice(4, -1).split(',').map(e => parseInt(e)));
  //grab the values in order of magnitude 
  //this uses the getLowestMiddleHighest function from the saturate section
  const [lowest,middle,highest] = getLowestMiddleHighest(rgbIntArray);
  const grayVal = getLightnessOfRGB(rgb) * 255;


  if(lowest.val===highest.val){return rgb;}
  
  const saturationRange =  Math.round(Math.min(255-grayVal,grayVal));
  const maxChange = grayVal-lowest.val;
  const changeAmount = Math.min(saturationRange/10, maxChange);
                               
  const middleValueRatio =(grayVal-middle.val)/(grayVal-highest.val);
  
  const returnArray=[];
  returnArray[highest.index]= Math.round(highest.val-changeAmount);
  returnArray[lowest.index]= Math.round(lowest.val+changeAmount);
  returnArray[middle.index]= Math.round(grayVal+(returnArray[highest.index]-grayVal)*middleValueRatio);
  return (`rgb(${[returnArray].join()})`);
}



Here’s a CodePen to experiment with the effect of these saturation functions:

How to lighten an RGB color keeping the hue the same

To lighten an RGB value and keep the hue the same, we need to increase each RGB value by the same proportion of difference between the value and 255. Let’s say we have this color: rgb(0, 153, 255). That’s a fully saturated blue/cyan. Let’s look at the difference between each RGB value and 255: 

  • Red is zero, so the difference is 255. 
  • Green is 153, so the difference is 102. 
  • Blue is 255, so the difference is zero. 

Now when we lighten the color, we need to increase each RGB value by the same fraction of our differences. One thing to note is that we are essentially mixing white into our color. This means that the color will slowly lose its saturation as it lightens.

Let’s increase the lightness on this color by a tenth. We’ll start with out lowest RGB value, red. We add on a tenth of 255 to this value. We also need to use Math.min to make sure that the value doesn’t increase over 255:

const red = 0;
const newRed = Math.round( red + Math.min( 255-red, 25.5 )); // 26

Now the other two RGB values need to increase by the same fraction of distance to 255.

To work this out, we get the difference between the lowest RGB value (before we increased it) and 255. Red was zero so our difference is 255. Then we get the amount the lowest RGB value increased in our transformation. Red increased from zero to 26, so our increase is 26.

Dividing the increase by the difference between the original color and 255 gives us a fraction we can use to work out the other values.

const redDiff = 255 - red; // 255
const redIncrease = newRed - red; // 26
const increaseFraction = redIncrease / redDiff; // 0.10196

Now we multiply the difference between the other RGB values and 255 by this fraction. This gives us the amount we need to add to each value.

const newGreen = Math.round(153 + (255 - 153) * increaseFraction); // 163
const newBlue = Math.round(255 + (255 - 255) * increaseFraction); // 255

This means the color we end up with is rgb(26, 163, 255). That’s still the same hue, but a touch lighter.

Here’s a function that does this: 

function lightenByTenth(rgb) {

  const rgbIntArray = rgb.replace(/ /g, '').slice(4, -1).split(',').map(e => parseInt(e));
  // Grab the values in order of magnitude 
  // This uses the getLowestMiddleHighest function from the saturate section
  const [lowest,middle,highest]=getLowestMiddleHighest(rgbIntArray);
  
  if(lowest.val===255){
    return rgb;
  }
  
  const returnArray = [];

  // First work out increase on lower value
  returnArray[lowest.index]= Math.round(lowest.val+(Math.min(255-lowest.val,25.5)));

  // Then apply to the middle and higher values
  const increaseFraction  = (returnArray[lowest.index]-lowest.val)/ (255-lowest.val);
  returnArray[middle.index]= middle.val +(255-middle.val)*increaseFraction ;
  returnArray[highest.index]= highest.val +(255-highest.val)*increaseFraction ;
  
  // Convert the array back into an rgb string
  return (`rgb(${returnArray.join()})`);
}

How to darken an RGB color keeping the hue the same

Darkening an RGB color is pretty similar. Instead of adding to the values to get 255, we’re subtracting from the values to get toward zero.

Also we start our transformation by reducing the highest value and getting the fraction of this decrease. We use this fraction to reduce the other two values by their distance to zero. This is a reversal of what we did lightening a color.

Darkening a color will also cause it to slowly lose its level of saturation.

function darkenByTenth(rgb) {
  
  // Our rgb to int array function again
  const rgbIntArray = rgb.replace(/ /g, '').slice(4, -1).split(',').map(e => parseInt(e));
  //grab the values in order of magnitude 
  //this uses the function from the saturate function
  const [lowest,middle,highest]=getLowestMiddleHighest(rgbIntArray);
  
  if(highest.val===0){
    return rgb;
  }

  const returnArray = [];

  returnArray[highest.index] = highest.val-(Math.min(highest.val,25.5));
  const decreaseFraction  =(highest.val-returnArray[highest.index])/ (highest.val);
  returnArray[middle.index]= middle.val -middle.val*decreaseFraction; 
  returnArray[lowest.index]= lowest.val -lowest.val*decreaseFraction;              
                            
  // Convert the array back into an rgb string
  return (`rgb(${returnArray.join()}) `);
}

Here’s a CodePen to experiment with the effect of the lightness functions:


If you ever do need to work with RGB colors, these functions will help you get you started. You can also give the HSL format a try, as well as the color libraries to extend browser support, and the Colour Grid tool for conversions.


The post Using JavaScript to Adjust Saturation and Brightness of RGB Colors appeared first on CSS-Tricks.

You can support CSS-Tricks by being an MVP Supporter.

CSS Variables + calc() + rgb() = Enforcing High Contrast Colors

As you may know, the recent updates and additions to CSS are extremely powerful. From Flexbox to Grid, and — what we’re concerned about here — Custom Properties (aka CSS variables), all of which make robust and dynamic layouts and interfaces easier than ever while opening up many other possibilities we used to only dream of.

The other day, I was thinking that there must be a way to use Custom Properties to color an element's background while maintaining a contrast with the foreground color that is high enough (using either white or black) to pass WCAG AA accessibility standards.

It’s astonishingly efficient to do this in JavaScript with a few lines of code:

var rgb = [255, 0, 0];

function setForegroundColor() {
  var sum = Math.round(((parseInt(rgb[0]) * 299) + (parseInt(rgb[1]) * 587) + (parseInt(rgb[2]) * 114)) / 1000);
  return (sum > 128) ? 'black' : 'white';
}

This takes the red, green and blue (RGB) values of an element’s background color, multiplies them by some special numbers (299, 587, and 144, respectively), adds them together, then divides the total by 1,000. When that sum is greater than 128, it will return black; otherwise, we’ll get white. Not too bad.

The only problem is, when it comes to recreating this in CSS, we don't have access to a native if statement to evaluate the sum. So,how can we replicate this in CSS without one?

Luckily, like HTML, CSS can be very forgiving. If we pass a value greater than 255 into the RGB function, it will get capped at 255. Same goes for numbers lower than 0. Even negative integers will get capped at 0. So, instead of testing whether our sum is greater or less than 128, we subtract 128 from our sum, giving us either a positive or negative integer. Then, if we multiply it by a large negative value (e.g. -1,000), we end up with either very large positive or negative values that we can then pass into the RGB function. Like I said earlier, this will get capped to the browser’s desired values.

Here is an example using CSS variables:

:root {
  --red: 28;
  --green: 150;
  --blue: 130;

  --accessible-color: calc(
    (
      (
        (var(--red) * 299) +
        (var(--green) * 587) +
        (var(--blue) * 114) /
        1000
      ) - 128
    ) * -1000
  );
}

.button {
  color:
    rgb(
      var(--accessible-color),
      var(--accessible-color),
      var(--accessible-color)
    );
  background-color:
    rgb(
      var(--red),
      var(--green),
      var(--blue)
    );
}

If my math is correct (and it's very possible that it's not) we get a total of 16,758, which is much greater than 255. Pass this total into the rgb() function for all three values, and the browser will set the text color to white.

At this point, everything seems to be working in both Chrome and Firefox, but Safari is a little cranky and gives a different result. At first, I thought this might be because Safari was not capping the large values I was providing in the function, but after some testing, I found that Safari didn't like the division in my calculation for some reason.

Taking a closer look at the calc() function, I noticed that I could remove the division of 1,000 by increasing the value of 128 to 128,000. Here’s how that looks so far:

:root {
  --red: 28;
  --green: 150;
  --blue: 130;

  --accessible-color: calc(
    (
      (
        (var(--red) * 299) +
        (var(--green) * 587) +
        (var(--blue) * 114)
      ) - 128000 /* HIGHLIGHT */
    ) * -1000
  );
}

.button {
  color:
    rgb(
      var(--accessible-color),
      var(--accessible-color),
      var(--accessible-color)
    );
  background-color:
    rgb(
      var(--red),
      var(--green),
      var(--blue)
    );
}

Throw in a few range sliders to adjust the color values, and there you have it: a dynamic UI element that can swap text color based on its background-color while maintaining a passing grade with WCAG AA.

See the Pen
CSS Only Accessible Button
by Josh Bader (@joshbader)
on CodePen.

Putting this concept to practical use

Below is a Pen showing how this technique can be used to theme a user interface. I have duplicated and moved the --accessible-color variable into the specific CSS rules that require it, and to help ensure backgrounds remain accessible based on their foregrounds, I have multiplied the --accessible-color variable by -1 in several places. The colors can be changed by using the controls located at the bottom-right. Click the cog/gear icon to access them.

See the Pen
CSS Variable Accessible UI
by Josh Bader (@joshbader)
on CodePen.

There are other ways to do this

A little while back, Facundo Corradini explained how to do something very similar in this post. He uses a slightly different calculation in combination with the hsl function. He also goes into detail about some of the issues he was having while coming up with the concept:

Some hues get really problematic (particularly yellows and cyans), as they are displayed way brighter than others (e.g. reds and blues) despite having the same lightness value. In consequence, some colors are treated as dark and given white text despite being extremely bright.

What in the name of CSS is going on?

He goes on to mention that Edge wasn’t capping his large numbers, and during my testing, I noticed that sometimes it was working and other times it was not. If anyone can pinpoint why this might be, feel free to share in the comments.

Further, Ana Tudor explains how using filter + mix-blend-mode can help contrast text against more complex backgrounds. And, when I say complex, I mean complex. She even goes so far as to demonstrate how text color can change as pieces of the background color change — pretty awesome!

Also, Robin Rendle explains how to use mix-blend-mode along with pseudo elements to automatically reverse text colors based on their background-color.

So, count this as yet another approach to throw into the mix. It’s incredibly awesome that Custom Properties open up these sorts of possibilities for us while allowing us to solve the same problem in a variety of ways.

The post CSS Variables + calc() + rgb() = Enforcing High Contrast Colors appeared first on CSS-Tricks.

Converting Color Spaces in JavaScript

A challenge I faced in building an image "emojifier" was that I needed to change the color spaces of values obtained using getImageData() from RGB to HSL. I used arrays of emojis arranged by brightness and saturation, and they were HSL-based for the best matches of average pixel colors with the emojis.

In this article, we’ll study functions that will be useful for converting both opaque and alpha-enabled color values. Modern browsers currently support the color spaces RGB(A), hex, and HSL(A). The functions and notations for these are rgb(), rgba(), #rgb/#rrggbb, #rgba/#rrggbbaa, hsl(), and hsla(). Browsers have always supported built-in names like aliceblue as well.

Balls with color values being inserted into a machine and coming out as HSL

Along the way, we’ll encounter use of some color syntaxes provided by a new Level 4 of the CSS Colors Module. For example, we now have hex with alpha as we mentioned (#rgba/#rrggbbaa) and RGB and HSL syntaxes no longer require commas (values like rgb(255 0 0) and hsl(240 100% 50%) became legal!).

Browser support for CSS Colors Level 4 isn’t universal as of this writing, so don’t expect new color syntaxes to work in Microsoft browsers or Safari if trying them in CSS.

RGB to Hex

Converting RGB to hex is merely a change of radices. We convert the red, green, and blue values from decimal to hexadecimal using toString(16). After prepending 0s to single digits and under, we can concatenate them and # to a single return statement.

function RGBToHex(r,g,b) {
  r = r.toString(16);
  g = g.toString(16);
  b = b.toString(16);

  if (r.length == 1)
    r = "0" + r;
  if (g.length == 1)
    g = "0" + g;
  if (b.length == 1)
    b = "0" + b;

  return "#" + r + g + b;
}

RGB in String

Alternatively, we can use a single string argument with the red, green and blue separated by commas or spaces (e.g. "rgb(255,25,2)", "rgb(255 25 2)"). Substring to eliminate rgb(, split what’s left by the ), then split that result’s first item by whichever the separator (sep) is. r, g, and b shall become local variables now. Then we use + before the split strings to convert them back to numbers before obtaining the hex values.

function RGBToHex(rgb) {
  // Choose correct separator
  let sep = rgb.indexOf(",") > -1 ? "," : " ";
  // Turn "rgb(r,g,b)" into [r,g,b]
  rgb = rgb.substr(4).split(")")[0].split(sep);

  let r = (+rgb[0]).toString(16),
      g = (+rgb[1]).toString(16),
      b = (+rgb[2]).toString(16);

  if (r.length == 1)
    r = "0" + r;
  if (g.length == 1)
    g = "0" + g;
  if (b.length == 1)
    b = "0" + b;

  return "#" + r + g + b;
}

In addition, we can allow strings with channel values as percentages by adding the loop after redefining rgb. It'll strip the %s and turn what’s left into values out of 255.

function RGBToHex(rgb) {
  let sep = rgb.indexOf(",") > -1 ? "," : " ";
  rgb = rgb.substr(4).split(")")[0].split(sep);

  // Convert %s to 0–255
  for (let R in rgb) {
    let r = rgb[R];
    if (r.indexOf("%") > -1)
      rgb[R] = Math.round(r.substr(0,r.length - 1) / 100 * 255);
      /* Example:
      75% -> 191
      75/100 = 0.75, * 255 = 191.25 -> 191
      */
  }

  ...
}

Now we can supply values like either of these:

  • rgb(255,25,2)
  • rgb(255 25 2)
  • rgb(50%,30%,10%)
  • rgb(50% 30% 10%)

RGBA to Hex (#rrggbbaa)

Converting RGBA to hex with the #rgba or #rrggbbaa notation follows virtually the same process as the opaque counterpart. Since the alpha (a) is normally a value between 0 and 1, we need to multiply it by 255, round the result, then convert it to hexadecimal.

function RGBAToHexA(r,g,b,a) {
  r = r.toString(16);
  g = g.toString(16);
  b = b.toString(16);
  a = Math.round(a * 255).toString(16);

  if (r.length == 1)
    r = "0" + r;
  if (g.length == 1)
    g = "0" + g;
  if (b.length == 1)
    b = "0" + b;
  if (a.length == 1)
    a = "0" + a;

  return "#" + r + g + b + a;
}

To do this with one string (including with percentages), we can follow what we did earlier. Also note the extra step of splicing out a slash. Since CSS Colors Level 4 supports the syntax of rgba(r g b / a), this is where we allow it. Alpha values can now be percentages! This removes the 0-1-only shackles we used to have. Therefore, the for loop cycling through rgba shall include a part to wipe the % from the alpha without multiplying by 255 (when R is 3 for alpha). Soon we can use values like rgba(255 128 0 / 0.8) and rgba(100% 21% 100% / 30%)!

function RGBAToHexA(rgba) {
  let sep = rgba.indexOf(",") > -1 ? "," : " ";
  rgba = rgba.substr(5).split(")")[0].split(sep);
                
  // Strip the slash if using space-separated syntax
  if (rgba.indexOf("/") > -1)
    rgba.splice(3,1);

  for (let R in rgba) {
    let r = rgba[R];
    if (r.indexOf("%") > -1) {
      let p = r.substr(0,r.length - 1) / 100;

      if (R < 3) {
        rgba[R] = Math.round(p * 255);
      } else {
        rgba[R] = p;
      }
    }
  }
}

Then, where the channels are converted to hex, we adjust a to use an item of rgba[].

function RGBAToHexA(rgba) {
  ...
    
  let r = (+rgba[0]).toString(16),
      g = (+rgba[1]).toString(16),
      b = (+rgba[2]).toString(16),
      a = Math.round(+rgba[3] * 255).toString(16);

  if (r.length == 1)
    r = "0" + r;
  if (g.length == 1)
    g = "0" + g;
  if (b.length == 1)
    b = "0" + b;
  if (a.length == 1)
    a = "0" + a;

  return "#" + r + g + b + a;
}

Now the function supports the following:

  • rgba(255,25,2,0.5)
  • rgba(255 25 2 / 0.5)
  • rgba(50%,30%,10%,0.5)
  • rgba(50%,30%,10%,50%)
  • rgba(50% 30% 10% / 0.5)
  • rgba(50% 30% 10% / 50%)

Hex to RGB

We know that the length of hex values must either be 3 or 6 (plus #). In either case, we begin each red (r), green (g), and blue (b) value with "0x" to convert them to hex. If we provide a 3-digit value, we concatenate the same value twice for each channel. If it’s a 6-digit value, we concatenate the first two for red, next two for green, and last two for blue. To get the values for the final rgb() string, we prepend the variables with + to convert them from strings back to numbers, which will yield the decimals we need.

function hexToRGB(h) {
  let r = 0, g = 0, b = 0;

  // 3 digits
  if (h.length == 4) {
    r = "0x" + h[1] + h[1];
    g = "0x" + h[2] + h[2];
    b = "0x" + h[3] + h[3];

  // 6 digits
  } else if (h.length == 7) {
    r = "0x" + h[1] + h[2];
    g = "0x" + h[3] + h[4];
    b = "0x" + h[5] + h[6];
  }
  
  return "rgb("+ +r + "," + +g + "," + +b + ")";
}

Output RGB with %s

If we want to return rgb() using percentages, then we can modify the function to utilize an optional isPct parameter like so:

function hexToRGB(h,isPct) {
  let r = 0, g = 0, b = 0;
  isPct = isPct === true;

  if (h.length == 4) {
    r = "0x" + h[1] + h[1];
    g = "0x" + h[2] + h[2];
    b = "0x" + h[3] + h[3];
    
  } else if (h.length == 7) {
    r = "0x" + h[1] + h[2];
    g = "0x" + h[3] + h[4];
    b = "0x" + h[5] + h[6];
  }
    
  if (isPct) {
    r = +(r / 255 * 100).toFixed(1);
    g = +(g / 255 * 100).toFixed(1);
    b = +(b / 255 * 100).toFixed(1);
  }
  
  return "rgb(" + (isPct ? r + "%," + g + "%," + b + "%" : +r + "," + +g + "," + +b) + ")";
}

Under the last if statement, using +s will convert r, g, and b to numbers. Each toFixed(1) along with them will round the result to the nearest tenth. Additionally, we won’t have whole numbers with .0 or the decades old quirk that produces numbers like 0.30000000000000004. Therefore, in the return, we omitted the +s right before the first r, g, and b to prevent NaNs caused by the %s. Now we can use hexToRGB("#ff0",true) to get rgb(100%,100%,0%)!

Hex (#rrggbbaa) to RGBA

The procedure for hex values with alpha should again be similar with the last. We simply detect a 4- or 8-digit value (plus #) then convert the alpha and divide it by 255. To get more precise output but not long decimal numbers for alpha, we can use toFixed(3).

function hexAToRGBA(h) {
  let r = 0, g = 0, b = 0, a = 1;

  if (h.length == 5) {
    r = "0x" + h[1] + h[1];
    g = "0x" + h[2] + h[2];
    b = "0x" + h[3] + h[3];
    a = "0x" + h[4] + h[4];

  } else if (h.length == 9) {
    r = "0x" + h[1] + h[2];
    g = "0x" + h[3] + h[4];
    b = "0x" + h[5] + h[6];
    a = "0x" + h[7] + h[8];
  }
  a = +(a / 255).toFixed(3);

  return "rgba(" + +r + "," + +g + "," + +b + "," + a + ")";
}

Output RGBA with %s

For a version that outputs percentages, we can do what we did in hexToRGB()—switch r, g, and b to 0–100% when isPct is true.

function hexAToRGBA(h,isPct) {
  let r = 0, g = 0, b = 0, a = 1;
  isPct = isPct === true;
    
  // Handling of digits
  ...

  if (isPct) {
    r = +(r / 255 * 100).toFixed(1);
    g = +(g / 255 * 100).toFixed(1);
    b = +(b / 255 * 100).toFixed(1);
  }
  a = +(a / 255).toFixed(3);

  return "rgba(" + (isPct ? r + "%," + g + "%," + b + "%," + a : +r + "," + +g + "," + +b + "," + a) + ")";
}

Here’s a quick fix if the alpha ought to be a percentage, too: move the statement where a is redefined above the last if statement. Then in that statement, modify a to be like r, g, and b. When isPct is true, a must also gain the %.

function hexAToRGBA(h,isPct) {
  ...
    
  a = +(a / 255).toFixed(3);
  if (isPct) {
    r = +(r / 255 * 100).toFixed(1);
    g = +(g / 255 * 100).toFixed(1);
    b = +(b / 255 * 100).toFixed(1);
    a = +(a * 100).toFixed(1);
  }

  return "rgba(" + (isPct ? r + "%," + g + "%," + b + "%," + a + "%" : +r + "," + +g + "," + +b + "," + a) + ")";
}

When we enter #7f7fff80 now, we should get rgba(127,127,255,0.502) or rgba(49.8%,49.8%,100%,50.2%).

RGB to HSL

Obtaining HSL values from RGB or hex is a bit more challenging because there’s a larger formula involved. First, we must divide the red, green, and blue by 255 to use values between 0 and 1. Then we find the minimum and maximum of those values (cmin and cmax) as well as the difference between them (delta). We need that result as part of calculating the hue and saturation. Right after the delta, let’s initialize the hue (h), saturation (s), and lightness (l).

function RGBToHSL(r,g,b) {
  // Make r, g, and b fractions of 1
  r /= 255;
  g /= 255;
  b /= 255;

  // Find greatest and smallest channel values
  let cmin = Math.min(r,g,b),
      cmax = Math.max(r,g,b),
      delta = cmax - cmin,
      h = 0,
      s = 0,
      l = 0;
}

Next, we need to calculate the hue, which is to be determined by the greatest channel value in cmax (or if all channels are the same). If there is no difference between the channels, the hue will be 0. If cmax is the red, then the formula will be ((g - b) / delta) % 6. If green, then (b - r) / delta + 2. Then, if blue, (r - g) / delta + 4. Finally, multiply the result by 60 (to get the degree value) and round it. Since hues shouldn’t be negative, we add 360 to it, if needed.

function RGBToHSL(r,g,b) {
  ...
  // Calculate hue
  // No difference
  if (delta == 0)
    h = 0;
  // Red is max
  else if (cmax == r)
    h = ((g - b) / delta) % 6;
  // Green is max
  else if (cmax == g)
    h = (b - r) / delta + 2;
  // Blue is max
  else
    h = (r - g) / delta + 4;

  h = Math.round(h * 60);
    
  // Make negative hues positive behind 360°
  if (h < 0)
      h += 360;
}

All that’s left is the saturation and lightness. Let’s calculate the lightness before we do the saturation, as the saturation will depend on it. It’s the sum of the maximum and minimum channel values cut in half ((cmax + cmin) / 2). Then delta will determine what the saturation will be. If it’s 0 (no difference between cmax and cmin), then the saturation is automatically 0. Otherwise, it’ll be 1 minus the absolute value of twice the lightness minus 1 (1 - Math.abs(2 * l - 1)). Once we have these values, we must convert them to values out of 100%, so we multiply them by 100 and round to the nearest tenth. Now we can string together our hsl().

function RGBToHSL(r,g,b) {
  ...
  // Calculate lightness
  l = (cmax + cmin) / 2;

  // Calculate saturation
  s = delta == 0 ? 0 : delta / (1 - Math.abs(2 * l - 1));
    
  // Multiply l and s by 100
  s = +(s * 100).toFixed(1);
  l = +(l * 100).toFixed(1);

  return "hsl(" + h + "," + s + "%," + l + "%)";
}

RGB in String

For one string, split the argument by comma or space, strip the %s, and localize r, g, and b like we did before.

function RGBToHSL(rgb) {
  let sep = rgb.indexOf(",") > -1 ? "," : " ";
  rgb = rgb.substr(4).split(")")[0].split(sep);

  for (let R in rgb) {
    let r = rgb[R];
    if (r.indexOf("%") > -1)
      rgb[R] = Math.round(r.substr(0,r.length - 1) / 100 * 255);
  }

  // Make r, g, and b fractions of 1
  let r = rgb[0] / 255,
      g = rgb[1] / 255,
      b = rgb[2] / 255;

  ...
}

RGBA to HSLA

Compared to what we just did to convert RGB to HSL, the alpha counterpart will be basically nothing! We just reuse the code for RGB to HSL (the multi-argument version), leave a alone, and pass a to the returned HSLA. Keep in mind it should be between 0 and 1.

function RGBAToHSLA(r,g,b,a) {
  // Code for RGBToHSL(r,g,b) before return
  ...

  return "hsla(" + h + "," + s + "%," +l + "%," + a + ")";
}

RGBA in String

For string values, we apply the splitting and stripping logic again but use the fourth item in rgba for a. Remember the new rgba(r g b / a) syntax? We’re employing the acceptance of it as we did for RGBAToHexA(). Then the rest of the code is the normal RGB-to-HSL conversion.

function RGBAToHSLA(rgba) {
  let sep = rgba.indexOf(",") > -1 ? "," : " ";
  rgba = rgba.substr(5).split(")")[0].split(sep);

  // Strip the slash if using space-separated syntax
  if (rgba.indexOf("/") > -1)
    rgba.splice(3,1);

  for (let R in rgba) {
    let r = rgba[R];
    if (r.indexOf("%") > -1) {
      let p = r.substr(0,r.length - 1) / 100;

      if (R < 3) {
        rgba[R] = Math.round(p * 255);
      } else {
        rgba[R] = p;
      }
    }
  }

  // Make r, g, and b fractions of 1
  let r = rgba[0] / 255,
      g = rgba[1] / 255,
      b = rgba[2] / 255,
      a = rgba[3];

  // Rest of RGB-to-HSL logic
  ...
}

Wish to leave the alpha as is? Remove the else statement from the for loop.

for (let R in rgba) {
  let r = rgba[R];
  if (r.indexOf("%") > -1) {
    let p = r.substr(0,r.length - 1) / 100;

    if (R < 3) {
      rgba[R] = Math.round(p * 255);
    }
  }
}

HSL to RGB

It takes slightly less logic to convert HSL back to RGB than the opposite way. Since we’ll use a range of 0–100 for the saturation and lightness, the first step is to divide them by 100 to values between 0 and 1. Next, we find chroma (c), which is color intensity, so that’s (1 - Math.abs(2 * l - 1)) * s. Then we use x for the second largest component (first being chroma), the amount to add to each channel to match the lightness (m), and initialize r, g, b.

function HSLToRGB(h,s,l) {
  // Must be fractions of 1
  s /= 100;
  l /= 100;

  let c = (1 - Math.abs(2 * l - 1)) * s,
      x = c * (1 - Math.abs((h / 60) % 2 - 1)),
      m = l - c/2,
      r = 0,
      g = 0,
      b = 0;
}

The hue will determine what the red, green, and blue should be depending on which 60° sector of the color wheel it lies.

Color wheel
The color wheel divided into 60° segments

Then c and x shall be assigned as shown below, leaving one channel at 0. To get the final RGB value, we add m to each channel, multiply it by 255, and round it.

function HSLToRGB(h,s,l) {
  ...

  if (0 <= h && h < 60) {
    r = c; g = x; b = 0;
  } else if (60 <= h && h < 120) {
    r = x; g = c; b = 0;
  } else if (120 <= h && h < 180) {
    r = 0; g = c; b = x;
  } else if (180 <= h && h < 240) {
    r = 0; g = x; b = c;
  } else if (240 <= h && h < 300) {
    r = x; g = 0; b = c;
  } else if (300 <= h && h < 360) {
    r = c; g = 0; b = x;
  }
  r = Math.round((r + m) * 255);
  g = Math.round((g + m) * 255);
  b = Math.round((b + m) * 255);

  return "rgb(" + r + "," + g + "," + b + ")";
}

HSL in String

For the single string version, we modify the first few statements basically the same way we did for RGBToHSL(r,g,b). Remove s /= 100; and l /= 100; and we’ll use the new statements to wipe the first 4 characters and the ) for our array of HSL values, then the %s from s and l before dividing them by 100.

function HSLToRGB(hsl) {
  let sep = hsl.indexOf(",") > -1 ? "," : " ";
  hsl = hsl.substr(4).split(")")[0].split(sep);

  let h = hsl[0],
      s = hsl[1].substr(0,hsl[1].length - 1) / 100,
      l = hsl[2].substr(0,hsl[2].length - 1) / 100;

  ...
}

The next handful of statements shall handle hues provided with a unit—degrees, radians, or turns. We multiply radians by 180/π and turns by 360. If the result ends up over 360, we compound modulus divide to keep it within the scope. All of this will happen before we deal with c, x, and m.

function HSLToRGB(hsl) {
  ...

  // Strip label and convert to degrees (if necessary)
  if (h.indexOf("deg") > -1)
    h = h.substr(0,h.length - 3);
  else if (h.indexOf("rad") > -1)
    h = Math.round(h.substr(0,h.length - 3) * (180 / Math.PI));
  else if (h.indexOf("turn") > -1)
    h = Math.round(h.substr(0,h.length - 4) * 360);
  // Keep hue fraction of 360 if ending up over
  if (h >= 360)
    h %= 360;
    
  // Conversion to RGB begins
  ...
}

After implementing the steps above, now the following can be safely used:

  • hsl(180 100% 50%)
  • hsl(180deg,100%,50%)
  • hsl(180deg 100% 50%)
  • hsl(3.14rad,100%,50%)
  • hsl(3.14rad 100% 50%)
  • hsl(0.5turn,100%,50%)
  • hsl(0.5turn 100% 50%)

Whew, that’s quite the flexibility!

Output RGB with %s

Similarly, we can modify this function to return percent values just like we did in hexToRGB().

function HSLToRGB(hsl,isPct) {
  let sep = hsl.indexOf(",") > -1 ? "," : " ";
  hsl = hsl.substr(4).split(")")[0].split(sep);
  isPct = isPct === true;

  ...

  if (isPct) {
    r = +(r / 255 * 100).toFixed(1);
    g = +(g / 255 * 100).toFixed(1);
    b = +(b / 255 * 100).toFixed(1);
  }

  return "rgb("+ (isPct ? r + "%," + g + "%," + b + "%" : +r + "," + +g + "," + +b) + ")";
}

HSLA to RGBA

Once again, handling alphas will be a no-brainer. We can reapply the code for the original HSLToRGB(h,s,l) and add a to the return.

function HSLAToRGBA(h,s,l,a) {
  // Code for HSLToRGB(h,s,l) before return
  ...

  return "rgba(" + r + "," + g + "," + b + "," + a + ")";
}

HSLA in String

Changing it to one argument, the way we’ll handle strings here will be not too much different than what we did earlier. A new HSLA syntax from Colors Level 4 uses (value value value / value) just like RGBA, so having the code to handle it, we’ll be able to plug in something like hsla(210 100% 50% / 0.5) here.

function HSLAToRGBA(hsla) {
  let sep = hsla.indexOf(",") > -1 ? "," : " ";
  hsla = hsla.substr(5).split(")")[0].split(sep);

  if (hsla.indexOf("/") > -1)
    hsla.splice(3,1);

  let h = hsla[0],
      s = hsla[1].substr(0,hsla[1].length - 1) / 100,
      l = hsla[2].substr(0,hsla[2].length - 1) / 100,
      a = hsla[3];
        
  if (h.indexOf("deg") > -1)
    h = h.substr(0,h.length - 3);
  else if (h.indexOf("rad") > -1)
    h = Math.round(h.substr(0,h.length - 3) * (180 / Math.PI));
  else if (h.indexOf("turn") > -1)
    h = Math.round(h.substr(0,h.length - 4) * 360);
  if (h >= 360)
    h %= 360;

  ...
}

Furthermore, these other combinations have become possible:

  • hsla(180,100%,50%,50%)
  • hsla(180 100% 50% / 50%)
  • hsla(180deg,100%,50%,0.5)
  • hsla(3.14rad,100%,50%,0.5)
  • hsla(0.5turn 100% 50% / 50%)

RGBA with %s

Then we can replicate the same logic for outputting percentages, including alpha. If the alpha should be a percentage (searched in pctFound), here’s how we can handle it:

  1. If r, g, and b are to be converted to percentages, then a should be multiplied by 100, if not already a percentage. Otherwise, drop the %, and it’ll be added back in the return.
  2. If r, g, and b should be left alone, then remove the % from a and divide a by 100.
function HSLAToRGBA(hsla,isPct) {
  // Code up to slash stripping
  ...
    
  isPct = isPct === true;
    
  // h, s, l, a defined to rounding of r, g, b
  ...
    
  let pctFound = a.indexOf("%") > -1;
    
  if (isPct) {
    r = +(r / 255 * 100).toFixed(1);
    g = +(g / 255 * 100).toFixed(1);
    b = +(b / 255 * 100).toFixed(1);
    if (!pctFound) {
      a *= 100;
    } else {
      a = a.substr(0,a.length - 1);
    }
        
  } else if (pctFound) {
    a = a.substr(0,a.length - 1) / 100;
  }

  return "rgba("+ (isPct ? r + "%," + g + "%," + b + "%," + a + "%" : +r + ","+ +g + "," + +b + "," + +a) + ")";
}

Hex to HSL

You might think this one and the next are crazier processes than the others, but they merely come in two parts with recycled logic. First, we convert the hex to RGB. That gives us the base 10s we need to convert to HSL.

function hexToHSL(H) {
  // Convert hex to RGB first
  let r = 0, g = 0, b = 0;
  if (H.length == 4) {
    r = "0x" + H[1] + H[1];
    g = "0x" + H[2] + H[2];
    b = "0x" + H[3] + H[3];
  } else if (H.length == 7) {
    r = "0x" + H[1] + H[2];
    g = "0x" + H[3] + H[4];
    b = "0x" + H[5] + H[6];
  }
  // Then to HSL
  r /= 255;
  g /= 255;
  b /= 255;
  let cmin = Math.min(r,g,b),
      cmax = Math.max(r,g,b),
      delta = cmax - cmin,
      h = 0,
      s = 0,
      l = 0;

  if (delta == 0)
    h = 0;
  else if (cmax == r)
    h = ((g - b) / delta) % 6;
  else if (cmax == g)
    h = (b - r) / delta + 2;
  else
    h = (r - g) / delta + 4;

  h = Math.round(h * 60);

  if (h < 0)
    h += 360;

  l = (cmax + cmin) / 2;
  s = delta == 0 ? 0 : delta / (1 - Math.abs(2 * l - 1));
  s = +(s * 100).toFixed(1);
  l = +(l * 100).toFixed(1);

  return "hsl(" + h + "," + s + "%," + l + "%)";
}

Hex (#rrggbbaa) to HSLA

There aren’t too many lines that change in this one. We’ll repeat what we recently did to get the alpha by converting the hex, but won’t divide it by 255 right away. First, we must get the hue, saturation, and lightness as we did in the other to-HSL functions. Then, before the ending return, we divide the alpha and set the decimal places.

function hexAToHSLA(H) {
  let r = 0, g = 0, b = 0, a = 1;

  if (H.length == 5) {
    r = "0x" + H[1] + H[1];
    g = "0x" + H[2] + H[2];
    b = "0x" + H[3] + H[3];
    a = "0x" + H[4] + H[4];
  } else if (H.length == 9) {
    r = "0x" + H[1] + H[2];
    g = "0x" + H[3] + H[4];
    b = "0x" + H[5] + H[6];
    a = "0x" + H[7] + H[8];
  }

  // Normal conversion to HSL
  ...
        
  a = (a / 255).toFixed(3);
                
  return "hsla("+ h + "," + s + "%," + l + "%," + a + ")";
}

HSL to Hex

This one starts as a conversion to RGB, but there’s an extra step to the Math.round()s of converting the RGB results to hex.

function HSLToHex(h,s,l) {
  s /= 100;
  l /= 100;

  let c = (1 - Math.abs(2 * l - 1)) * s,
      x = c * (1 - Math.abs((h / 60) % 2 - 1)),
      m = l - c/2,
      r = 0,
      g = 0,
      b = 0;

  if (0 <= h && h < 60) {
    r = c; g = x; b = 0;
  } else if (60 <= h && h < 120) {
    r = x; g = c; b = 0;
  } else if (120 <= h && h < 180) {
    r = 0; g = c; b = x;
  } else if (180 <= h && h < 240) {
    r = 0; g = x; b = c;
  } else if (240 <= h && h < 300) {
    r = x; g = 0; b = c;
  } else if (300 <= h && h < 360) {
    r = c; g = 0; b = x;
  }
  // Having obtained RGB, convert channels to hex
  r = Math.round((r + m) * 255).toString(16);
  g = Math.round((g + m) * 255).toString(16);
  b = Math.round((b + m) * 255).toString(16);

  // Prepend 0s, if necessary
  if (r.length == 1)
    r = "0" + r;
  if (g.length == 1)
    g = "0" + g;
  if (b.length == 1)
    b = "0" + b;

  return "#" + r + g + b;
}

HSL in String

Even the first few lines of this function will be like those in HSLToRGB() if we changed it to accept a single string. This is how we’ve been obtaining the hue, saturation, and lightness separately in the first place. Let’s not forget the step to remove the hue label and convert to degrees, too. All of this will be in place of s /= 100; and l /= 100;.

function HSLToHex(hsl) {
  let sep = hsl.indexOf(",") > -1 ? "," : " ";
  hsl = hsl.substr(4).split(")")[0].split(sep);

  let h = hsl[0],
      s = hsl[1].substr(0,hsl[1].length - 1) / 100,
      l = hsl[2].substr(0,hsl[2].length - 1) / 100;
        
  // Strip label and convert to degrees (if necessary)
  if (h.indexOf("deg") > -1)
    h = h.substr(0,h.length - 3);
  else if (h.indexOf("rad") > -1)
    h = Math.round(h.substr(0,h.length - 3) * (180 / Math.PI));
  else if (h.indexOf("turn") > -1)
    h = Math.round(h.substr(0,h.length - 4) * 360);
  if (h >= 360)
    h %= 360;

  ...
}

HSLA to Hex (#rrggbbaa)

Adding alpha to the mix, we convert a to hex and add a fourth if to prepend a 0, if necessary. You probably already familiar with this logic because we last used it in RGBAToHexA().

function HSLAToHexA(h,s,l,a) {
  // Repeat code from HSLToHex(h,s,l) until 3 `toString(16)`s
  ...

  a = Math.round(a * 255).toString(16);

  if (r.length == 1)
    r = "0" + r;
  if (g.length == 1)
    g = "0" + g;
  if (b.length == 1)
    b = "0" + b;
  if (a.length == 1)
    a = "0" + a;

  return "#" + r + g + b + a;
}

HSLA in String

Finally, the lines of the single argument version up to a = hsla[3] are no different than those of HSLAToRGBA().

function HSLAToHexA(hsla) {
  let sep = hsla.indexOf(",") > -1 ? "," : " ";
  hsla = hsla.substr(5).split(")")[0].split(sep);
    
  // Strip the slash
  if (hsla.indexOf("/") > -1)
    hsla.splice(3,1);
    
  let h = hsla[0],
      s = hsla[1].substr(0,hsla[1].length - 1) / 100,
      l = hsla[2].substr(0,hsla[2].length - 1) / 100,
      a = hsla[3];
            
  ...
}

Built-in Names

To convert a named color to RGB, hex, or HSL, you might consider turning this table of 140+ names and hex values into a massive object at the start. The truth is that we really don’t need one because here’s what we can do:

  1. Create an element
  2. Give it a text color
  3. Obtain the value of that property
  4. Remove the element
  5. Return the stored color value, which will be in RGB by default

So, our function to get RGB will only be seven statements!

function nameToRGB(name) {
  // Create fake div
  let fakeDiv = document.createElement("div");
  fakeDiv.style.color = name;
  document.body.appendChild(fakeDiv);

  // Get color of div
  let cs = window.getComputedStyle(fakeDiv),
      pv = cs.getPropertyValue("color");

  // Remove div after obtaining desired color value
  document.body.removeChild(fakeDiv);

  return pv;
}

Let’s go even further. How about we change the output to hex instead?

function nameToHex(name) {
  // Get RGB from named color in temporary div
  let fakeDiv = document.createElement("div");
  fakeDiv.style.color = name;
  document.body.appendChild(fakeDiv);

  let cs = window.getComputedStyle(fakeDiv),
      pv = cs.getPropertyValue("color");

  document.body.removeChild(fakeDiv);

  // Code ripped from RGBToHex() (except pv is substringed)
  let rgb = pv.substr(4).split(")")[0].split(","),
      r = (+rgb[0]).toString(16),
      g = (+rgb[1]).toString(16),
      b = (+rgb[2]).toString(16);

  if (r.length == 1)
    r = "0" + r;
  if (g.length == 1)
    g = "0" + g;
  if (b.length == 1)
    b = "0" + b;

  return "#" + r + g + b;
}

Or, why not HSL? 😉

function nameToHSL(name) {
  let fakeDiv = document.createElement("div");
  fakeDiv.style.color = name;
  document.body.appendChild(fakeDiv);

  let cs = window.getComputedStyle(fakeDiv),
      pv = cs.getPropertyValue("color");

  document.body.removeChild(fakeDiv);

  // Code ripped from RGBToHSL() (except pv is substringed)
  let rgb = pv.substr(4).split(")")[0].split(","),
      r = rgb[0] / 255,
      g = rgb[1] / 255,
      b = rgb[2] / 255,
      cmin = Math.min(r,g,b),
      cmax = Math.max(r,g,b),
      delta = cmax - cmin,
      h = 0,
      s = 0,
      l = 0;

  if (delta == 0)
    h = 0;
  else if (cmax == r)
    h = ((g - b) / delta) % 6;
  else if (cmax == g)
    h = (b - r) / delta + 2;
  else
    h = (r - g) / delta + 4;

  h = Math.round(h * 60);

  if (h < 0)
    h += 360;

  l = (cmax + cmin) / 2;
  s = delta == 0 ? 0 : delta / (1 - Math.abs(2 * l - 1));
  s = +(s * 100).toFixed(1);
  l = +(l * 100).toFixed(1);

  return "hsl(" + h + "," + s + "%," + l + "%)";
}

In the long run, every conversion from a name becomes a conversion from RGB after cracking the name.

Validating Colors

In all these functions, there haven’t been any measures to prevent or correct ludicrous input (say hues over 360 or percentages over 100). If we’re only manipulating pixels on a <canvas> fetched using getImageData(), validation of color values isn’t necessary before converting because they’ll be correct no matter what. If we’re creating a color conversion tool where users supply the color, then validation would be much needed.

It’s easy to handle improper input for channels as separate arguments, like this for RGB:

// Correct red
if (r > 255)
  r = 255;
else if (r < 0)
  r = 0;

If validating a whole string, then a regular expression is needed. For instance, this is the RGBToHex() function given a validation step with an expression:

function RGBToHex(rgb) {
  // Expression for rgb() syntaxes
  let ex = /^rgb\((((((((1?[1-9]?\d)|10\d|(2[0-4]\d)|25[0-5]),\s?)){2}|((((1?[1-9]?\d)|10\d|(2[0-4]\d)|25[0-5])\s)){2})((1?[1-9]?\d)|10\d|(2[0-4]\d)|25[0-5]))|((((([1-9]?\d(\.\d+)?)|100|(\.\d+))%,\s?){2}|((([1-9]?\d(\.\d+)?)|100|(\.\d+))%\s){2})(([1-9]?\d(\.\d+)?)|100|(\.\d+))%))\)$/i;

  if (ex.test(rgb)) {
    // Logic to convert RGB to hex
    ...

  } else {
    // Something to do if color is invalid
  }
}

To test other types of values, below is a table of expressions to cover both opaque and alpha-enabled:

Color Value RegEx
RGB /^rgb\((((((((1?[1-9]?\d)|10\d|(2[0-4]\d)|25[0-5]),\s?)){2}|((((1?[1-9]?\d)|10\d|(2[0-4]\d)|25[0-5])\s)){2})((1?[1-9]?\d)|10\d|(2[0-4]\d)|25[0-5]))|((((([1-9]?\d(\.\d+)?)|100|(\.\d+))%,\s?){2}|((([1-9]?\d(\.\d+)?)|100|(\.\d+))%\s){2})(([1-9]?\d(\.\d+)?)|100|(\.\d+))%))\)$/i
RGBA /^rgba\((((((((1?[1-9]?\d)|10\d|(2[0-4]\d)|25[0-5]),\s?)){3})|(((([1-9]?\d(\.\d+)?)|100|(\.\d+))%,\s?){3}))|(((((1?[1-9]?\d)|10\d|(2[0-4]\d)|25[0-5])\s){3})|(((([1-9]?\d(\.\d+)?)|100|(\.\d+))%\s){3}))\/\s)((0?\.\d+)|[01]|(([1-9]?\d(\.\d+)?)|100|(\.\d+))%)\)$/i
Hex /^#([\da-f]{3}){1,2}$/i
Hex (with Alpha) /^#([\da-f]{4}){1,2}$/i
HSL /^hsl\(((((([12]?[1-9]?\d)|[12]0\d|(3[0-5]\d))(\.\d+)?)|(\.\d+))(deg)?|(0|0?\.\d+)turn|(([0-6](\.\d+)?)|(\.\d+))rad)((,\s?(([1-9]?\d(\.\d+)?)|100|(\.\d+))%){2}|(\s(([1-9]?\d(\.\d+)?)|100|(\.\d+))%){2})\)$/i
HSLA /^hsla\(((((([12]?[1-9]?\d)|[12]0\d|(3[0-5]\d))(\.\d+)?)|(\.\d+))(deg)?|(0|0?\.\d+)turn|(([0-6](\.\d+)?)|(\.\d+))rad)(((,\s?(([1-9]?\d(\.\d+)?)|100|(\.\d+))%){2},\s?)|((\s(([1-9]?\d(\.\d+)?)|100|(\.\d+))%){2}\s\/\s))((0?\.\d+)|[01]|(([1-9]?\d(\.\d+)?)|100|(\.\d+))%)\)$/i

Looking at the expressions for RGB(A) and HSL(A), you probably have big eyes right now; these were made comprehensive enough to include most of the new syntaxes from CSS Colors Level 4. Hex, on the other hand, doesn’t need expressions as long as the others because of only digit counts. In a moment, we’ll dissect these and decipher the parts. Note that case-insensitive values (/i) pass all these.

RGB

/^rgb\((((((((1?[1-9]?\d)|10\d|(2[0-4]\d)|25[0-5]),\s?)){2}|((((1?[1-9]?\d)|10\d|(2[0-4]\d)|25[0-5])\s)){2})((1?[1-9]?\d)|10\d|(2[0-4]\d)|25[0-5]))|((((([1-9]?\d(\.\d+)?)|100|(\.\d+))%,\s?){2}|((([1-9]?\d(\.\d+)?)|100|(\.\d+))%\s){2})(([1-9]?\d(\.\d+)?)|100|(\.\d+))%))\)$/i

Because rgb() accepts either all integers or all percentages, both cases are covered. In the outmost group, between the ^rgb\( and \)$, there are inner groups for both integers and percentages, all comma-spaces or spaces only as separators:

  1. (((((1?[1-9]?\d)|10\d|(2[0-4]\d)|25[0-5]),\s?){2}|(((1?[1-9]?\d)|10\d|(2[0-4]\d)|25[0-5])\s){2})((1?[1-9]?\d)|10\d|(2[0-4]\d)|25[0-5]))
  2. ((((([1-9]?\d(\.\d+)?)|100|(\.\d+))%,\s?){2}|((([1-9]?\d(\.\d+)?)|100|(\.\d+))%\s){2})(([1-9]?\d(\.\d+)?)|100|(\.\d+))%)

In the first half, we accept two instances of integers for red and green from 0–99 or 111-199 ((1?[1-9]?\d)), 100–109 (10\d), 200-249 ((2[0-4]\d)), or 250–255 (25[0-5]). We couldn’t simply do \d{1,3} because values like 03 or 017 and those greater than 255 shouldn’t be allowed. After that goes the comma and optional space (,\s?). On the other side of the |, after the first {2} (which indicates two instances of integers), we check for the same thing with space separators if the left side is false. Then for blue, the same should be accepted, but without a separator.

In the other half, acceptable values for percentages, including floats, should either be 0–99, explicitly 100 and not a float, or floats under 1 with the 0 dropped. Therefore, the segment here is (([1-9]?\d(\.\d+)?)|100|(\.\d+)), and it appears three times; twice with separator (,\s?){2}, %\s){2}), once without.

It is legal to use percentages without space separators (rgb(100%50%10%) for instance) in CSS, but the functions we wrote don’t support that. The same goes for rgba(100%50%10%/50%), hsl(40 100%50%), and hsla(40 100%50%/0.5). This could very well be a plus for code golfing and minification!

RGBA

/^rgba\((((((((1?[1-9]?\d)|10\d|(2[0-4]\d)|25[0-5]),\s?)){3})|(((([1-9]?\d(\.\d+)?)|100|(\.\d+))%,\s?){3}))|(((((1?[1-9]?\d)|10\d|(2[0-4]\d)|25[0-5])\s){3})|(((([1-9]?\d(\.\d+)?)|100|(\.\d+))%\s){3}))\/\s)((0?\.\d+)|[01]|(([1-9]?\d(\.\d+)?)|100|(\.\d+))%)\)$/i

The next expression is very similar to the pervious, but three instances of integers (((((1?[1-9]?\d)|10\d|(2[0-4]\d)|25[0-5]),\s?){3})) or percentages ((((([1-9]?\d(\.\d+)?)|100|(\.\d+))%,\s?){3})), plus comma optional space are checked. Otherwise, it looks for the same thing but with space separators, plus a slash and space (\/\s) after the blue. Next to that is ((0?\.\d+)|[01]|(([1-9]?\d(\.\d+)?)|100|(\.\d+))%) where we accept floats with or without the first 0 ((0?\.\d+)), 0 or 1 ([01]) on the dot, or 0–100% ((([1-9]?\d(\.\d+)?)|100|(\.\d+))%).

Hex with Alpha

// #rgb/#rrggbb
/^#([\da-f]{3}){1,2}$/i
// #rgba/#rrggbbaa
/^#([\da-f]{4}){1,2}$/i

For both hex—with and without alpha—instances of numbers or letters a–f ([\da-f]) are accepted. Then one or two instances of this are counted for either short or longhand values supplied (#rgb or #rrggbb). As an illustration, we have this same short pattern: /^#([\da-f]{n}){1,2}$/i. Simply change n to 3 or 4.

HSL and HSLA

// HSL
/^hsl\((((((\[12]?[1-9]?\d)|[12]0\d|(3[0-5]\d))(\.\d+)?)|(\.\d+))(deg)?|(0|0?\.\d+)turn|(([0-6\\.\d+)?)|(\.\d+))rad)((,\s?(([1-9]?\d(\.\d+)?)|100|(\.\d+))%){2}|(\s(([1-9]?\d(\.\d+)?)|100|(\.\d+))%){2})\)$/i
// HSLA
/^hsla\((((((\[12]?[1-9]?\d)|[12]0\d|(3[0-5]\d))(\.\d+)?)|(\.\d+))(deg)?|(0|0?\.\d+)turn|(([0-6\\.\d+)?)|(\.\d+))rad)(((,\s?(([1-9]?\d(\.\d+)?)|100|(\.\d+))%){2},\s?)|((\s(([1-9]?\d(\.\d+)?)|100|(\.\d+))%){2}\s\/\s))((0?\.\d+)|[01]|(([1-9]?\d(\.\d+)?)|100|(\.\d+))%)\)$/i

After the \( in both expressions for HSL and HSLA, this large chunk is for the hue:

(((((\[12]?[1-9]?\d)|[12]0\d|(3[0-5]\d))(\.\d+)?)|(\.\d+))(deg)?|(0|0?\.\d+)turn|(([0-6\\.\d+)?)|(\.\d+))rad)

([12]?[1-9]?\d) covers 0–99, 110–199, and 210–299. [12]0\d covers 110–109 and 200–209. Then (3[0-5]\d) takes care of 300–359. The reason for this division of ranges is similar to that of integers in the rgb() syntax: ruling out zeros coming first and values greater than the maximum. Since hues can be floating point numbers, the first (\.\d+)? is for that.

Next to the | after the aforementioned segment of code, the second (\.\d+) is for floats without a leading zero.

Now let’s move up a level and decipher the next small chunk:

(deg)?|(0|0?\.\d+)turn|((\[0-6\\.\d+)?)|(\.\d+))rad

This contains the labels we can use for the hue—degrees, turns, or radians. We can include all or none of deg. Values in turn must be under 1. For radians, we can accept any float between 0–7. We do know, however, that one 360° turn is 2π, and it stops approximately at 6.28. You may think 6.3 and over shouldn’t be accepted. Because 2π is an irrational number, it would be too messy for this example to try to satisfy every decimal place provided by the JavaScript console. Besides, we have this snippet in our HSLTo_() functions as a second layer of security if hues 360° or over were to happen:

// Keep hue fraction of 360 if ending up over
if (h >= 360)
  h %= 360;

Now let’s move up a level and decipher the second chunk:

(,\s?(([1-9]?\d(\.\d+)?)|100|(\.\d+))%){2}

We’re counting two instances of comma-space-percentages for the saturation and lightness (space optional). In the group after the ,\s?, we test for values 0–99 with or without decimal points (([1-9]?\d(\.\d+)?)), exactly 100, or floats under 1 without the leading 0 ((\.\d+)).

The last part the HSL expression, before the ending (\)$/i), is a similar expression if spaces are the only separator:

(\s(([1-9]?\d(\.\d+)?)|100|(\.\d+))%){2}

\s is in the beginning instead of ,\s?. Then in the HSLA expression, this same chunk is inside another group with ,\s? after its {2}.

((,\s?(([1-9]?\d(\.\d+)?)|100|(\.\d+))%){2},\s?)

That counts the comma-space between the lightness and alpha. Then if we have spaces as separators, we need to check for a space-slash-space (\s\/\s) after counting two instances of space and a percentage.

((\s(([1-9]?\d(\.\d+)?)|100|(\.\d+))%){2}\s\/\s))

After that, we have this left to check the alpha value:

(((0?\.\d+)|[01])|(([1-9]?\d(\.\d+)?)|100|(\.\d+))%)

Matches for (0?\.\d+) include floats under 1 with or without the leading 0, 0 or 1 for [01], and 0–100%.

Conclusion

If your current challenge is to convert one color space to another, you now have some ideas on how to approach it. Because it would be tiresome to walk through converting every color space ever invented in one post, we discussed the most practical and browser-supported ones. If you’d like to go beyond supported color spaces (say CMYK, XYZ, or CIE L*a*b*), EasyRGB) provides an amazing set of code-ready formulas.

To see all the conversions demonstrated here, I’ve set up a CodePen demo that shows inputs and outputs in a table. You can try different colors in lines 2–10 and see the complete functions in the JavaScript panel.

See the Pen Color Conversion by Jon Kantner (@jkantner) on CodePen.

The post Converting Color Spaces in JavaScript appeared first on CSS-Tricks.