Avoiding the Pitfalls of Nested Components in a Design System

When creating a component-based, front-end infrastructure, one of the biggest pain points I’ve personally encountered is making components that are both reusable and responsive when there are nested components within components.

Take the following “call to action” (<CTA />) component, for example:

On smaller devices we want it to look like this:

This is simple enough with basic media queries. If we’re using flexbox, a media query can change the flex direction and makes the button go the full width. But we run into a problem when we start nesting other components in there. For example, say we’re using a component for the button and it already has a prop that makes it full-width. We are actually duplicating the button’s styling when applying a media query to the parent component. The nested button is already capable of handling it!

This is a small example and it wouldn’t be that bad of a problem, but for other scenarios it could cause a lot of duplicated code to replicate the styling. What if in the future we wanted to change something about how full-width buttons are styled? We’d need to go through and change it in all these different places. We should be able to change it in the button component and have that update everywhere.

Wouldn’t it be nice if we could move away from media queries and have more control of the styling? We should be using a component’s existing props and be able to pass different values based on the screen width.

Well, I have a way to do that and will show you how I did it.

I am aware that container queries can solve a lot of these issues, but it’s still in early days and doesn’t solve the issue with passing a variety of props based on screen width.

Tracking the window width

First, we need to track the current width of the page and set a breakpoint. This can be done with any front-end framework, but I’m using a Vue composable here as to demonstrate the idea:

// composables/useBreakpoints.js

import { readonly, ref } from "vue";

const bps = ref({ xs: 0, sm: 1, md: 2, lg: 3, xl: 4 })
const currentBreakpoint = ref(bps.xl);

export default () => {
  const updateBreakpoint = () => {
  
    const windowWidth = window.innerWidth;
    
    if(windowWidth >= 1200) {
      currentBreakpoint.value = bps.xl
    } else if(windowWidth >= 992) {
      currentBreakpoint.value = bps.lg
    } else if(windowWidth >= 768) {
      currentBreakpoint.value = bps.md
    } else if(windowWidth >= 576) {
      currentBreakpoint.value = bps.sm
    } else {
      currentBreakpoint.value = bps.xs
    }
  }

  return {
    currentBreakpoint: readonly(currentBreakpoint),
    bps: readonly(bps),
    updateBreakpoint,
  };
};

The reason we are using numbers for the currentBreakpoint object will become clear later.

Now we can listen for window resize events and update the current breakpoint using the composable in the main App.vue file:

// App.vue

<script>
import useBreakpoints from "@/composables/useBreakpoints";
import { onMounted, onUnmounted } from 'vue'

export default {
  name: 'App',
  
  setup() {
    const { updateBreakpoint } = useBreakpoints()

    onMounted(() => {
      updateBreakpoint();
      window.addEventListener('resize', updateBreakpoint)
    })

    onUnmounted(() => {
      window.removeEventListener('resize', updateBreakpoint)
    })
  }
}
</script>

We probably want this to be debounced, but I’m keeping things simple for brevity.

Styling components

We can update the <CTA /> component to accept a new prop for how it should be styled:

// CTA.vue
props: {
  displayMode: {
    type: String,
    default: "default"
  }
}

The naming here is totally arbitrary. You can use whatever names you’d like for each of the component modes.

We can then use this prop to change the mode based on the current breakpoint:

<CTA :display-mode="currentBreakpoint > bps.md ? 'default' : 'compact'" />

You can see now why we’re using a number to represent the current breakpoint — it’s so the correct mode can be applied to all breakpoints below or above a certain number.

We can then use this in the CTA component to style according to the mode passed through:

// components/CTA.vue

<template>
  <div class="cta" :class="displayMode">
    
    <div class="cta-content">
      <h5>title</h5>
      <p>description</p>
    </div>
    
    <Btn :block="displayMode === 'compact'">Continue</Btn>
    
  </div>
</template>

<script>
import Btn from "@/components/ui/Btn";
export default {
  name: "CTA",
  components: { Btn },
  props: {
    displayMode: {
      type: String,
      default: "default"
    },
  }
}
</script>

<style scoped lang="scss">
.cta {
  display: flex;
  align-items: center;
  
  .cta-content {
    margin-right: 2rem;
  }

  &.compact {
    flex-direction: column;
    .cta-content {
      margin-right: 0;
      margin-bottom: 2rem;
    }
  }
}
</style>

Already, we have removed the need for media queries! You can see this in action on a demo page I created.

Admittedly, this may seem like a lengthy process for something so simple. But when applied to multiple components, this approach can massively improve the consistency and stability of the UI while reducing the total amount of code we need to write. This way of using JavaScript and CSS classes to control the responsive styling also has another benefit…

Extensible functionality for nested components

There have been scenarios where I’ve needed to revert back to a previous breakpoint for a component. For example, if it takes up 50% of the screen, I want it displayed in the small mode. But at a certain screen size, it becomes full-width. In other words, the mode should change one way or the other when there’s a resize event.

Showing three versions of a call-to-action components with nested components within it.

I’ve also been in situations where the same component is used in different modes on different pages. This isn’t something that frameworks like Bootstrap and Tailwind can do, and using media queries to pull it off would be a nightmare. (You can still use those frameworks using this technique, just without the need for the responsive classes they provide.)

We could use a media query that only applies to middle sized screens, but this doesn’t solve the issue with varying props based on screen width. Thankfully, the approach we’re covering can solve that. We can modify the previous code to allow for a custom mode per breakpoint by passing it through an array, with the first item in the array being the smallest screen size.

<CTA :custom-mode="['compact', 'default', 'compact']" />

First, let’s update the props that the <CTA /> component can accept:

props: {
  displayMode: {
    type: String,
    default: "default"
  },
  customMode: {
    type: [Boolean, Array],
    default: false
  },
}

We can then add the following to generate to correct mode:

import { computed } from "vue";
import useBreakpoints from "@/composables/useBreakpoints";

// ...

setup(props) {

  const { currentBreakpoint } = useBreakpoints()

  const mode = computed(() => {
    if(props.customMode) {
      return props.customMode[currentBreakpoint.value] ?? props.displayMode
    }
    return props.displayMode
  })

  return { mode }
},

This is taking the mode from the array based on the current breakpoint, and defaults to the displayMode if one isn’t found. Then we can use mode instead to style the component.

Extraction for reusability

Many of these methods can be extracted into additional composables and mixins that can be reuseD with other components.

Extracting computed mode

The logic for returning the correct mode can be extracted into a composable:

// composables/useResponsive.js

import { computed } from "vue";
import useBreakpoints from "@/composables/useBreakpoints";

export const useResponsive = (props) => {

  const { currentBreakpoint } = useBreakpoints()

  const mode = computed(() => {
    if(props.customMode) {
      return props.customMode[currentBreakpoint.value] ?? props.displayMode
    }
    return props.displayMode
  })

  return { mode }
}

Extracting props

In Vue 2, we could repeat props was by using mixins, but there are noticeable drawbacks. Vue 3 allows us to merge these with other props using the same composable. There’s a small caveat with this, as IDEs seem unable to recognize props for autocompletion using this method. If this is too annoying, you can use a mixin instead.

Optionally, we can also pass custom validation to make sure we’re using the modes only available to each component, where the first value passed through to the validator is the default.

// composables/useResponsive.js

// ...

export const withResponsiveProps = (validation, props) => {
  return {
    displayMode: {
      type: String,
      default: validation[0],
      validator: function (value) {
        return validation.indexOf(value) !== -1
      }
    },
    customMode: {
      type: [Boolean, Array],
      default: false,
      validator: function (value) {
        return value ? value.every(mode => validation.includes(mode)) : true
      }
    },
    ...props
  }
}

Now let’s move the logic out and import these instead:

// components/CTA.vue

import Btn from "@/components/ui/Btn";
import { useResponsive, withResponsiveProps } from "@/composables/useResponsive";

export default {
  name: "CTA",
  components: { Btn },
  props: withResponsiveProps(['default 'compact'], {
    extraPropExample: {
      type: String,
    },
  }),
  
  setup(props) {
    const { mode } = useResponsive(props)
    return { mode }
  }
}

Conclusion

Creating a design system of reusable and responsive components is challenging and prone to inconsistencies. Plus, we saw how easy it is to wind up with a load of duplicated code. There’s a fine balance when it comes to creating components that not only work in many contexts, but play well with other components when they’re combined.

I’m sure you’ve come across this sort of situation in your own work. Using these methods can reduce the problem and hopefully make the UI more stable, reusable, maintainable, and easy to use.


Avoiding the Pitfalls of Nested Components in a Design System originally published on CSS-Tricks. You should get the newsletter.

How Do You Handle Component Spacing in a Design System?

Say you’ve got a <Card /> component. It’s highly likely it shouldn’t be butted right up against any other components with no spacing around it. That’s true for… pretty much every component. So, how do you handle component spacing in a design system?

Do you apply spacing using margin directly on the <Card />? Perhaps margin-block-end: 1rem; margin-inline-end: 1rem; so it pushes away from the two sides where more content natural flows? That’s a little presumptuous. Perhaps the cards are children inside a <Grid /> component and the grid applies a gap: 1rem. That’s awkward, as now the <Card /> component spacing is going to conflict with the <Grid /> component spacing, which is very likely not what you want, not to mention the amount of space is hard coded.

Example of a component spacing where a card component is to the left of an accordion component and above an article, with 50 pixels of spacing between all three elements. Lorem i-sum text throughout in a mono font. The card has a Calvin and Hobbes comic image.
Adding space to the inline start and block end of a card component.

Different perspectives on component spacing

Eric Bailey got into this recently and looked at some options:

  • You could bake spacing into every component and try to be as clever as you can about it. (But that’s pretty limiting.)
  • You could pass in component spacing, like <Card space="xxl" />. (That can be a good approach, likely needs more than one prop, maybe even one for each direction, which is quite verbose.)
  • You could use no component spacing and create something like a <Spacer /> or <Layout /> component specifically for spacing between components. (It breaks up the job of components nicely, but can also be verbose and add unnecessary DOM weight.)

This conversation has a wide spectrum of viewpoints, some as extreme as Max Stoiber saying just never use margin ever at all. That’s a little dogmatic for me, but I like that it’s trying to rethink things. I do like the idea of taking the job of spacing and layout away from components themselves — like, for example, those content components should completely not care where they are used and let layout happen a level up from them.

Adam Argyle predicted a few years back that the use of margin in CSS would decline as the use of gap rises. He’s probably going to end up right about this, especially now that flexbox has gap and that developers have an appetite these dats to use CSS Flexbox and Grid on nearly everything at both a macro and micro level.


How Do You Handle Component Spacing in a Design System? originally published on CSS-Tricks. You should get the newsletter and become a supporter.

How to Make a Component That Supports Multiple Frameworks in a Monorepo

Your mission — should you decide to accept it — is to build a Button component in four frameworks, but, only use one button.css file!

This idea is very important to me. I’ve been working on a component library called AgnosticUI where the purpose is building UI components that aren’t tied to any one particular JavaScript framework. AgnosticUI works in React, Vue 3, Angular, and Svelte. So that’s exactly what we’ll do today in this article: build a button component that works across all these frameworks.

The source code for this article is available on GitHub on the the-little-button-that-could-series branch.

Table of contents

Why a monorepo?

We’re going to set up a tiny Yarn workspaces-based monorepo. Why? Chris actually has a nice outline of the benefits in another post. But here’s my own biased list of benefits that I feel are relevant for our little buttons endeavor:

Coupling

We’re trying to build a single button component that uses just one button.css file across multiple frameworks. So, by nature, there’s some purposeful coupling going on between the various framework implementations and the single-source-of-truth CSS file. A monorepo setup provides a convenient structure that facilitates copying our single button.css component into various framework-based projects.

Workflow

Let’s say the button needs a tweak — like the “focus-ring” implementation, or we screwed up the use of aria in the component templates. Ideally, we’d like to correct things in one place rather than making individual fixes in separate repositories.

Testing

We want the convenience of firing up all four button implementations at the same time for testing. As this sort of project grows, it’s safe to assume there will be more proper testing. In AgnosticUI, for example, I’m currently using Storybook and often kick off all the framework Storybooks, or run snapshot testing across the entire monorepo.

I like what Leonardo Losoviz has to say about the monorepo approach. (And it just so happens to align with with everything we’ve talked about so far.)

I believe the monorepo is particularly useful when all packages are coded in the same programming language, tightly coupled, and relying on the same tooling.

Setting up

Time to dive into code — start by creating a top-level directory on the command-line to house the project and then cd into it. (Can’t think of a name? mkdir buttons && cd buttons will work fine.)

First off, let’s initialize the project:

$ yarn init
yarn init v1.22.15
question name (articles): littlebutton
question version (1.0.0): 
question description: my little button project
question entry point (index.js): 
question repository url: 
question author (Rob Levin): 
question license (MIT): 
question private: 
success Saved package.json

That gives us a package.json file with something like this:

{
  "name": "littlebutton",
  "version": "1.0.0",
  "description": "my little button project",
  "main": "index.js",
  "author": "Rob Levin",
  "license": "MIT"
}

Creating the baseline workspace

We can set the first one up with this command:

mkdir -p ./littlebutton-css

Next, we need to add the two following lines to the monorepo’s top-level package.json file so that we keep the monorepo itself private. It also declares our workspaces:

// ...
"private": true,
"workspaces": ["littlebutton-react", "littlebutton-vue", "littlebutton-svelte", "littlebutton-angular", "littlebutton-css"]

Now descend into the littlebutton-css directory. We’ll again want to generate a package.json with yarn init. Since we’ve named our directory littlebutton-css (the same as how we specified it in our workspaces in package.json) we can simply hit the Return key and accept all the prompts:

$ cd ./littlebutton-css && yarn init
yarn init v1.22.15
question name (littlebutton-css): 
question version (1.0.0): 
question description: 
question entry point (index.js): 
question repository url: 
question author (Rob Levin): 
question license (MIT): 
question private: 
success Saved package.json

At this point, the directory structure should look like this:

├── littlebutton-css
│   └── package.json
└── package.json

We’ve only created the CSS package workspace at this point as we’ll be generating our framework implementations with tools like vite which, in turn, generate a package.json and project directory for you. We will have to remember that the name we choose for these generated projects must match the name we’ve specified in the package.json for our earlier workspaces to work.

Baseline HTML & CSS

Let’s stay in the ./littlebutton-css workspace and create our simple button component using vanilla HTML and CSS files.

touch index.html ./css/button.css

Now our project directory should look like this:

littlebutton-css
├── css
│   └── button.css
├── index.html
└── package.json

Let’s go ahead and connect some dots with some boilerplate HTML in ./index.html:

<!doctype html>
<html lang="en">
<head>
  <meta charset="utf-8">
  <title>The Little Button That Could</title>
  <meta name="description" content="">
  <meta name="viewport" content="width=device-width, initial-scale=1">
  <link rel="stylesheet" href="css/button.css">
</head>
<body>
  <main>
    <button class="btn">Go</button>
  </main>
</body>
</html>

And, just so we have something visual to test, we can add a little color in ./css/button.css:

.btn {
  color: hotpink;
}
A mostly unstyled button with hot-pink text from the monorepo framework.

Now open up that index.html page in the browser. If you see an ugly generic button with hotpink text… success!

Framework-specific workspaces

So what we just accomplished is the baseline for our button component. What we want to do now is abstract it a bit so it’s extensible for other frameworks and such. For example, what if we want to use the button in a React project? We’re going to need workspaces in our monorepo for each one. We’ll start with React, then follow suit for Vue 3, Angular, and Svelte.

React

We’re going to generate our React project using vite, a very lightweight and blazingly fast builder. Be forewarned that if you attempt to do this with create-react-app, there’s a very good chance you will run into conflicts later with react-scripts and conflicting webpack or Babel configurations from other frameworks, like Angular.

To get our React workspace going, let’s go back into the terminal and cd back up to the top-level directory. From there, we’ll use vite to initialize a new project — let’s call it littlebutton-react — and, of course, we’ll select react as the framework and variant at the prompts:

$ yarn create vite
yarn create v1.22.15
[1/4] 🔍  Resolving packages...
[2/4] 🚚  Fetching packages...
[3/4] 🔗  Linking dependencies...
[4/4] 🔨  Building fresh packages...

success Installed "create-vite@2.6.6" with binaries:
      - create-vite
      - cva
✔ Project name: … littlebutton-react
✔ Select a framework: › react
✔ Select a variant: › react

Scaffolding project in /Users/roblevin/workspace/opensource/guest-posts/articles/littlebutton-react...

Done. Now run:

  cd littlebutton-react
  yarn
  yarn dev

✨  Done in 17.90s.

We initialize the React app with these commands next:

cd littlebutton-react
yarn
yarn dev

With React installed and verified, let’s replace the contents of src/App.jsx to house our button with the following code:

import "./App.css";

const Button = () => {
  return <button>Go</button>;
};

function App() {
  return (
    <div className="App">
      <Button />
    </div>
  );
}

export default App;

Now we’re going to write a small Node script that copies our littlebutton-css/css/button.css right into our React application for us. This step is probably the most interesting one to me because it’s both magical and ugly at the same time. It’s magical because it means our React button component is truly deriving its styles from the same CSS written in the baseline project. It’s ugly because, well, we are reaching up out of one workspace and grabbing a file from another. ¯\_(ツ)_/¯

Add the following little Node script to littlebutton-react/copystyles.js:

const fs = require("fs");
let css = fs.readFileSync("../littlebutton-css/css/button.css", "utf8");
fs.writeFileSync("./src/button.css", css, "utf8");

Let’s place a node command to run that in a package.json script that happens before the dev script in littlebutton-react/package.json. We’ll add a syncStyles and update the dev to call syncStyles before vite:

"syncStyles": "node copystyles.js",
"dev": "yarn syncStyles && vite",

Now, anytime we fire up our React application with yarn dev, we’ll first be copying the CSS file over. In essence, we’re “forcing” ourselves to not diverge from the CSS package’s button.css in our React button.

But we want to also leverage CSS Modules to prevent name collisions and global CSS leakage, so we have one more step to do to get that wired up (from the same littlebutton-react directory):

touch src/button.module.css

Next, add the following to the new src/button.module.css file:

.btn {
  composes: btn from './button.css';
}

I find composes (also known as composition) to be one of the coolest features of CSS Modules. In a nutshell, we’re copying our HTML/CSS version of button.css over wholesale then composing from our one .btn style rule.

With that, we can go back to our src/App.jsx and import the CSS Modules styles into our React component with this:

import "./App.css";
import styles from "./button.module.css";

const Button = () => {
  return <button className={styles.btn}>Go</button>;
};

function App() {
  return (
    <div className="App">
      <Button />
    </div>
  );
}

export default App;

Whew! Let’s pause and try to run our React app again:

yarn dev

If all went well, you should see that same generic button, but with hotpink text. Before we move on to the next framework, let’s move back up to our top-level monorepo directory and update its package.json:

{
  "name": "littlebutton",
  "version": "1.0.0",
  "description": "toy project",
  "main": "index.js",
  "author": "Rob Levin",
  "license": "MIT",
  "private": true,
  "workspaces": ["littlebutton-react", "littlebutton-vue", "littlebutton-svelte", "littlebutton-angular"],
  "scripts": {
    "start:react": "yarn workspace littlebutton-react dev"
  }
}

Run the yarn command from the top-level directory to get the monorepo-hoisted dependencies installed.

The only change we’ve made to this package.json is a new scripts section with a single script to start the React app. By adding start:react we can now run yarn start:react from our top-level directory and it will fire up the project we just built in ./littlebutton-react without the need for cd‘ing — super convenient!

We’ll tackle Vue and Svelte next. It turns out that we can take a pretty similar approach for these as they both use single file components (SFC). Basically, we get to mix HTML, CSS, and JavaScript all into one single file. Whether you like the SFC approach or not, it’s certainly adequate enough for building out presentational or primitive UI components.

Vue

Following the steps from vite’s scaffolding docs we’ll run the following command from the monorepo’s top-level directory to initialize a Vue app:

yarn create vite littlebutton-vue --template vue

This generates scaffolding with some provided instructions to run the starter Vue app:

cd littlebutton-vue
yarn
yarn dev

This should fire up a starter page in the browser with some heading like “Hello Vue 3 + Vite.” From here, we can update src/App.vue to:

<template>
  <div id="app">
    <Button class="btn">Go</Button>
  </div>
</template>

<script>
import Button from './components/Button.vue'

export default {
  name: 'App',
  components: {
    Button
  }
}
</script>

And we’ll replace any src/components/* with src/components/Button.vue:

<template>
  <button :class="classes"><slot /></button>
</template>

<script>
export default {
  name: 'Button',
  computed: {
    classes() {
      return {
        [this.$style.btn]: true,
      }
    }
  }
}
</script>

<style module>
.btn {
  color: slateblue;
}
</style>

Let’s break this down a bit:

  • :class="classes" is using Vue’s binding to call the computed classes method.
  • The classes method, in turn, is utilizing CSS Modules in Vue with the this.$style.btn syntax which will use styles contained in a <style module> tag.

For now, we’re hardcoding color: slateblue simply to test that things are working properly within the component. Try firing up the app again with yarn dev. If you see the button with our declared test color, then it’s working!

Now we’re going to write a Node script that copies our littlebutton-css/css/button.css into our Button.vue file similar to the one we did for the React implementation. As mentioned, this component is a SFC so we’re going to have to do this a little differently using a simple regular expression.

Add the following little Node.js script to littlebutton-vue/copystyles.js:

const fs = require("fs");
let css = fs.readFileSync("../littlebutton-css/css/button.css", "utf8");
const vue = fs.readFileSync("./src/components/Button.vue", "utf8");
// Take everything between the starting and closing style tag and replace
const styleRegex = /<style module>([\s\S]*?)<\/style>/;
let withSynchronizedStyles = vue.replace(styleRegex, `<style module>\n${css}\n</style>`);
fs.writeFileSync("./src/components/Button.vue", withSynchronizedStyles, "utf8");

There’s a bit more complexity in this script, but using replace to copy text between opening and closing style tags via regex isn’t too bad.

Now let’s add the following two scripts to the scripts clause in the littlebutton-vue/package.json file:

"syncStyles": "node copystyles.js",
"dev": "yarn syncStyles && vite",

Now run yarn syncStyles and look at ./src/components/Button.vue again. You should see that our style module gets replaced with this:

<style module>
.btn {
  color: hotpink;
}
</style>

Run the Vue app again with yarn dev and verify you get the expected results — yes, a button with hotpink text. If so, we’re good to move on to the next framework workspace!

Svelte

Per the Svelte docs, we should kick off our littlebutton-svelte workspace with the following, starting from the monorepo’s top-level directory:

npx degit sveltejs/template littlebutton-svelte
cd littlebutton-svelte
yarn && yarn dev

Confirm you can hit the “Hello World” start page at http://localhost:5000. Then, update littlebutton-svelte/src/App.svelte:

<script>
  import Button from './Button.svelte';
</script>
<main>
  <Button>Go</Button>
</main>

Also, in littlebutton-svelte/src/main.js, we want to remove the name prop so it looks like this:

import App from './App.svelte';

const app = new App({
  target: document.body
});

export default app;

And finally, add littlebutton-svelte/src/Button.svelte with the following:

<button class="btn">
  <slot></slot>
</button>

<script>
</script>

<style>
  .btn {
    color: saddlebrown;
  }
</style>

One last thing: Svelte appears to name our app: "name": "svelte-app" in the package.json. Change that to "name": "littlebutton-svelte" so it’s consistent with the workspaces name in our top-level package.json file.

Once again, we can copy our baseline littlebutton-css/css/button.css into our Button.svelte. As mentioned, this component is a SFC, so we’re going to have to do this using a regular expression. Add the following Node script to littlebutton-svelte/copystyles.js:

const fs = require("fs");
let css = fs.readFileSync("../littlebutton-css/css/button.css", "utf8");
const svelte = fs.readFileSync("./src/Button.svelte", "utf8");
const styleRegex = /<style>([\s\S]*?)<\/style>/;
let withSynchronizedStyles = svelte.replace(styleRegex, `<style>\n${css}\n</style>`);
fs.writeFileSync("./src/Button.svelte", withSynchronizedStyles, "utf8");

This is super similar to the copy script we used with Vue, isn’t it? We’ll add similar scripts to our package.json script:

"dev": "yarn syncStyles && rollup -c -w",
"syncStyles": "node copystyles.js",

Now run yarn syncStyles && yarn dev. If all is good, we once again should see a button with hotpink text.

If this is starting to feel repetitive, all I have to say is welcome to my world. What I’m showing you here is essentially the same process I’ve been using to build my AgnosticUI project!

Angular

You probably know the drill by now. From the monorepo’s top-level directory, install Angular and create an Angular app. If we were creating a full-blown UI library we’d likely use ng generate library or even nx. But to keep things as straightforward as possible we’ll set up a boilerplate Angular app as follows:

npm install -g @angular/cli ### unless you already have installed
ng new littlebutton-angular ### choose no for routing and CSS
? Would you like to add Angular routing? (y/N) N
❯ CSS 
  SCSS   [ https://sass-lang.com/documentation/syntax#scss ] 
  Sass   [ https://sass-lang.com/documentation/syntax#the-indented-syntax ] 
  Less   [ http://lesscss.org ]

cd littlebutton-angular && ng serve --open

With the Angular setup confirmed, let’s update some files. cd littlebutton-angular, delete the src/app/app.component.spec.ts file, and add a button component in src/components/button.component.ts, like this:

import { Component } from '@angular/core';

@Component({
  selector: 'little-button',
  templateUrl: './button.component.html',
  styleUrls: ['./button.component.css'],
})
export class ButtonComponent {}

Add the following to src/components/button.component.html:

<button class="btn">Go</button>

And put this in the src/components/button.component.css file for testing:

.btn {
  color: fuchsia;
}

In src/app/app.module.ts:

import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

import { AppComponent } from './app.component';
import { ButtonComponent } from '../components/button.component';

@NgModule({
  declarations: [AppComponent, ButtonComponent],
  imports: [BrowserModule],
  providers: [],
  bootstrap: [AppComponent],
})
export class AppModule {}

Next, replace src/app/app.component.ts with:

import { Component } from '@angular/core';

@Component({
  selector: 'app-root',
  templateUrl: './app.component.html',
  styleUrls: ['./app.component.css'],
})
export class AppComponent {}

Then, replace src/app/app.component.html with:

<main>
  <little-button>Go</little-button>
</main>

With that, let’s run yarn start and verify our button with fuchsia text renders as expected.

Again, we want to copy over the CSS from our baseline workspace. We can do that by adding this to littlebutton-angular/copystyles.js:

const fs = require("fs");
let css = fs.readFileSync("../littlebutton-css/css/button.css", "utf8");
fs.writeFileSync("./src/components/button.component.css", css, "utf8");

Angular is nice in that it uses ViewEncapsulation that defaults to to emulate which mimics, according to the docs,

[…] the behavior of shadow DOM by preprocessing (and renaming) the CSS code to effectively scope the CSS to the component’s view.

This basically means we can literally copy over button.css and use it as-is.

Finally, update the package.json file by adding these two lines in the scripts section:

"start": "yarn syncStyles && ng serve",
"syncStyles": "node copystyles.js",

With that, we can now run yarn start once more and verify our button text color (which was fuchsia) is now hotpink.

What have we just done?

Let’s take a break from coding and think about the bigger picture and what we’ve just done. Basically, we’ve set up a system where any changes to our CSS package’s button.css will get copied over into all the framework implementations as a result of our copystyles.js Node scripts. Further, we’ve incorporated idiomatic conventions for each of the frameworks:

  • SFC for Vue and Svelte
  • CSS Modules for React (and Vue within the SFC <style module> setup)
  • ViewEncapsulation for Angular

Of course I state the obvious that these aren’t the only ways to do CSS in each of the above frameworks (e.g. CSS-in-JS is a popular choice), but they are certainly accepted practices and are working quite well for our greater goal — to have a single CSS source of truth to drive all framework implementations.

If, for example, our button was in use and our design team decided we wanted to change from 4px to 3px border-radius, we could update the one file, and any separate implementations would stay synced.

This is compelling if you have a polyglot team of developers that enjoy working in multiple frameworks, or, say an offshore team (that’s 3× productive in Angular) that’s being tasked to build a back-office application, but your flagship product is built in React. Or, you’re building an interim admin console and you’d love to experiment with using Vue or Svelte. You get the picture.

Finishing touches

OK, so we have the monorepo architecture in a really good spot. But there’s a few things we can do to make it even more useful as far as the developer experience goes.

Better start scripts

Let’s move back up to our top-level monorepo directory and update its package.json scripts section with the following so we can kick any framework implementation without cd‘ing:

// ...
"scripts": {
  "start:react": "yarn workspace littlebutton-react dev",
  "start:vue": "yarn workspace littlebutton-vue dev ",
  "start:svelte": "yarn workspace littlebutton-svelte dev",
  "start:angular": "yarn workspace littlebutton-angular start"
},

Better baseline styles

We can also provide a better set of baseline styles for the button so it starts from a nice, neutral place. Here’s what I did in the littlebutton-css/css/button.css file.

View Full Snippet
.btn {
  --button-dark: #333;
  --button-line-height: 1.25rem;
  --button-font-size: 1rem;
  --button-light: #e9e9e9;
  --button-transition-duration: 200ms;
  --button-font-stack:
    system-ui,
    -apple-system,
    BlinkMacSystemFont,
    "Segoe UI",
    Roboto,
    Ubuntu,
    "Helvetica Neue",
    sans-serif;

  display: inline-flex;
  align-items: center;
  justify-content: center;
  white-space: nowrap;
  user-select: none;
  appearance: none;
  cursor: pointer;
  box-sizing: border-box;
  transition-property: all;
  transition-duration: var(--button-transition-duration);
  color: var(--button-dark);
  background-color: var(--button-light);
  border-color: var(--button-light);
  border-style: solid;
  border-width: 1px;
  font-family: var(--button-font-stack);
  font-weight: 400;
  font-size: var(--button-font-size);
  line-height: var(--button-line-height);
  padding-block-start: 0.5rem;
  padding-block-end: 0.5rem;
  padding-inline-start: 0.75rem;
  padding-inline-end: 0.75rem;
  text-decoration: none;
  text-align: center;
}

/* Respect users reduced motion preferences */
@media (prefers-reduced-motion) {
  .btn {
    transition-duration: 0.001ms !important;
  }
}

Let’s test this out! Fire up each of the four framework implementations with the new and improved start scripts and confirm the styling changes are in effect.

Neutral (gray) styled button from the monorepo framework

One CSS file update proliferated to four frameworks — pretty cool, eh!?

Set a primary mode

We’re going to add a mode prop to each of our button’s and implement primary mode next. A primary button could be any color but we’ll go with a shade of green for the background and white text. Again, in the baseline stylesheet:

.btn {
  --button-primary: #14775d;
  --button-primary-color: #fff;
  /* ... */
}

Then, just before the @media (prefers-reduced-motion) query, add the following btn-primary to the same baseline stylesheet:

.btn-primary {
  background-color: var(--button-primary);
  border-color: var(--button-primary);
  color: var(--button-primary-color);
}

There we go! Some developer conveniences and better baseline styles!

Updating each component to take a mode property

Now that we’ve added our new primary mode represented by the .btn-primary class, we want to sync the styles for all four framework implementations. So, let’s add some more package.json scripts to our top level scripts:

"sync:react": "yarn workspace littlebutton-react syncStyles",
"sync:vue": "yarn workspace littlebutton-vue syncStyles",
"sync:svelte": "yarn workspace littlebutton-svelte syncStyles",
"sync:angular": "yarn workspace littlebutton-angular syncStyles"

Be sure to respect JSON’s comma rules! Depending on where you place these lines within your scripts: {...}, you’ll want to make sure there are no missing or trailing commas.

Go ahead and run the following to fully synchronize the styles:

yarn sync:angular && yarn sync:react && yarn sync:vue && yarn sync:svelte

Running this doesn’t change anything because we haven’t applied the primary class yet, but you should at least see the CSS has been copied over if you go look at the framework’s button component CSS.

React

If you haven’t already, double-check that the updated CSS got copied over into littlebutton-react/src/button.css. If not, you can run yarn syncStyles. Note that if you forget to run yarn syncStyles our dev script will do this for us when we next start the application anyway:

"dev": "yarn syncStyles && vite",

For our React implementation, we additionally need to add a composed CSS Modules class in littlebutton-react/src/button.module.css that is composed from the new .btn-primary:

.btnPrimary {
  composes: btn-primary from './button.css';
}

We’ll also update littlebutton-react/src/App.jsx:

import "./App.css";
import styles from "./button.module.css";

const Button = ({ mode }) => {
  const primaryClass = mode ? styles[`btn${mode.charAt(0).toUpperCase()}${mode.slice(1)}`] : '';
  const classes = primaryClass ? `${styles.btn} ${primaryClass}` : styles.btn;
  return <button className={classes}>Go</button>;
};

function App() {
  return (
    <div className="App">
      <Button mode="primary" />
    </div>
  );
}

export default App;

Fire up the React app with yarn start:react from the top-level directory. If all goes well, you should now see your green primary button.

A dark green button with white text positioning in the center of the screen.

As a note, I’m keeping the Button component in App.jsx for brevity. Feel free to tease out the Button component into its own file if that bothers you.

Vue

Again, double-check that the button styles were copied over and, if not, run yarn syncStyles.

Next, make the following changes to the <script> section of littlebutton-vue/src/components/Button.vue:

<script>
export default {
  name: 'Button',
  props: {
    mode: {
      type: String,
      required: false,
      default: '',
      validator: (value) => {
        const isValid = ['primary'].includes(value);
        if (!isValid) {
          console.warn(`Allowed types for Button are primary`);
        }
        return isValid;
      },
    }
  },
  computed: {
    classes() {
      return {
        [this.$style.btn]: true,
        [this.$style['btn-primary']]: this.mode === 'primary',
      }
    }
  }
}
</script>

Now we can update the markup in littlebutton-vue/src/App.vue to use the new mode prop:

<Button mode="primary">Go</Button>

Now you can yarn start:vue from the top-level directory and check for the same green button.

Svelte

Let’s cd into littlebutton-svelte and verify that the styles in littlebutton-svelte/src/Button.svelte have the new .btn-primary class copied over, and yarn syncStyles if you need to. Again, the dev script will do that for us anyway on the next startup if you happen to forget.

Next, update the Svelte template to pass the mode of primary. In src/App.svelte:

<script>
  import Button from './Button.svelte';
</script>
<main>
  <Button mode="primary">Go</Button>
</main>

We also need to update the top of our src/Button.svelte component itself to accept the mode prop and apply the CSS Modules class:

<button class="{classes}">
  <slot></slot>
</button>
<script>
  export let mode = "";
  const classes = [
    "btn",
    mode ? `btn-${mode}` : "",
  ].filter(cls => cls.length).join(" ");
</script>

Note that the <styles> section of our Svelte component shouldn’t be touched in this step.

And now, you can yarn dev from littlebutton-svelte (or yarn start:svelte from a higher directory) to confirm the green button made it!

Angular

Same thing, different framework: check that the styles are copied over and run yarn syncStyles if needed.

Let’s add the mode prop to the littlebutton-angular/src/app/app.component.html file:

<main>
  <little-button mode="primary">Go</little-button>
</main>

Now we need to set up a binding to a classes getter to compute the correct classes based on if the mode was passed in to the component or not. Add this to littlebutton-angular/src/components/button.component.html (and note the binding is happening with the square brackets):

<button [class]="classes">Go</button>

Next, we actually need to create the classes binding in our component at littlebutton-angular/src/components/button.component.ts:

import { Component, Input } from '@angular/core';

@Component({
  selector: 'little-button',
  templateUrl: './button.component.html',
  styleUrls: ['./button.component.css'],
})
export class ButtonComponent {
  @Input() mode: 'primary' | undefined = undefined;

  public get classes(): string {
    const modeClass = this.mode ? `btn-${this.mode}` : '';
    return [
      'btn',
      modeClass,
    ].filter(cl => cl.length).join(' ');
  }
}

We use the Input directive to take in the mode prop, then we create a classes accessor which adds the mode class if it’s been passed in.

Fire it up and look for the green button!

Code complete

If you’ve made it this far, congratulations — you’ve reached code complete! If something went awry, I’d encourage you to cross-reference the source code over at GitHub on the the-little-button-that-could-series branch. As bundlers and packages have a tendency to change abruptly, you might want to pin your package versions to the ones in this branch if you happen to experience any dependency issues.

Take a moment to go back and compare the four framework-based button component implementations we just built. They’re still small enough to quickly notice some interesting differences in how props get passed in, how we bind to props, and how CSS name collisions are prevented among other subtle differences. As I continue to add components to AgnosticUI (which supports these exact same four frameworks), I’m continually pondering which offers the best developer experience. What do you think?

Homework

If you’re the type that likes to figure things out on your own or enjoys digging in deeper, here are ideas.

Button states

The current button styles do not account for various states, like :hover. I believe that’s a good first exercise.

/* You should really implement the following states
   but I will leave it as an exercise for you to 
   decide how to and what values to use.
*/
.btn:focus {
  /* If you elect to remove the outline, replace it
     with another proper affordance and research how
     to use transparent outlines to support windows
     high contrast
  */
}
.btn:hover { }
.btn:visited { }
.btn:active { }
.btn:disabled { }

Variants

Most button libraries support many button variations for things like sizes, shapes, and colors. Try creating more than the primary mode we already have. Maybe a secondary variation? A warning or success? Maybe filled and outline? Again, you can look at AgnosticUI’s buttons page for ideas.

CSS custom properties

If you haven’t started using CSS custom properties yet, I’d strongly recommend it. You can start by having a look at AgnosticUI’s common styles. I heavily lean on custom properties in there. Here are some great articles that cover what custom properties are and how you might leverage them:

Types

No… not typings, but the <button> element’s type attribute. We didn’t cover that in our component but there’s an opportunity to extend the component to other use cases with valid types, like button, submit, and reset. This is pretty easy to do and will greatly improve the button’s API.

More ideas

Gosh, you could do so much — add linting, convert it to Typescript, audit the accessibility, etc.

The current Svelte implementation is suffering from some pretty loose assumptions as we have no defense if the valid primary mode isn’t passed — that would produce a garbage CSS class:

mode ? `btn-${mode}` : "",

You could say, “Well, .btn-garbage as a class isn’t exactly harmful.” But it’s probably a good idea to style defensively when and where possible.

Potential pitfalls

There are some things you should be aware of before taking this approach further:

  • Positional CSS based on the structure of the markup will not work well for the CSS Modules based techniques used here.
  • Angular makes positional techniques even harder as it generates :host element representing each component view. This means you have these extra elements in between your template or markup structure. You’ll need to work around that.
  • Copying styles across workspace packages is a bit of an anti-pattern to some folks. I justify it because I believe the benefits outweigh the costs; also, when I think about how monorepos use symlinks and (not-so-failproof) hoisting, I don’t feel so bad about this approach.
  • You’ll have to subscribe to the decoupled techniques used here, so no CSS-in-JS.

I believe that all approaches to software development have their pros and cons and you ultimately have to decide if sharing a single CSS file across frameworks works for you or your specific project. There are certainly other ways you could do this (e.g. using littlebuttons-css as an npm package dependency) if needed.

Conclusion

Hopefully I’ve whet your appetite and you’re now really intrigued to create UI component libraries and/or design systems that are not tied to a particular framework. Maybe you have a better idea on how to achieve this — I’d love to hear your thoughts in the comments!

I’m sure you’ve seen the venerable TodoMVC project and how many framework implementations have been created for it. Similarly, wouldn’t it be nice to have a UI component library of primitives available for many frameworks? Open UI is making great strides to properly standardize native UI component defaults, but I believe we’ll always need to insert ourselves to some extent. Certainly, taking a good year to build a custom design system is quickly falling out of favor and companies are seriously questioning their ROI. Some sort of scaffolding is required to make the endeavor practical.

The vision of AgnosticUI is to have a relatively agnostic way to build design systems quickly that are not tied down to a particular frontend framework. If you’re compelled to get involved, the project is still very early and approachable and I’d love some help! Plus, you’re already pretty familiar with the how the project works now that you’ve gone through this tutorial!


How to Make a Component That Supports Multiple Frameworks in a Monorepo originally published on CSS-Tricks. You should get the newsletter and become a supporter.

Tonic (Component Framework)

I enjoy little frameworks like Tonic. It’s essentially syntactic sugar over <web-components /> to make them feel easier to use. Define a Class, template literal an HTML template, probably some other fancy helpers, and you’ve got a component that doesn’t feel terribly different to something like a React component, except you need no build process or other exotic tooling.

Here’s a Hello World + Counter example:

They have a whole bunch of examples (in a separate repo). You can snag and use them, and they are pretty nice! So that makes Tonic a bit like a design system as well as a web component framework.

To be fair, it’s not that different from Lit, which Google is behind and pushing pretty actively.

Here’s a Hello, World + Counter with Lit:

And Dave was just showing me petite-vue the other day, so I figured I might as well do that one, too:

I’d say that petite-vue example wins for just how super easy that is to pull of in just declarative HTML. But of course, there are a bunch of other considerations from specific features, syntax, philosophy, and size. Just looking at size, if I pop open the Network tab in DevTools and see the over-the-wire JavaScript for each demo…

  • Tonic = 5.1 KB
  • Lit = 12.6 KB
  • petite-vue = 8.1 KB

They are all basically the same: tiny.

I’ve never actually built anything real in any of them, so I’m not the best to judge one from the other. But they all seem pretty neat to me, particularly because they require no build step.


The post Tonic (Component Framework) appeared first on CSS-Tricks. You can support CSS-Tricks by being an MVP Supporter.

Component Architecture: 3 Reasons to Invest

A component architecture is a type of application architecture composed of independent, modular, and reusable building blocks called components. When designing an app following component-based architecture principles, developers combine, reuse, and version these objects, rather than building every inch of an app from scratch.

Let’s be honest: in times of uncertainty where speed is paramount, meeting the increasing app demand while maintaining complex technology is a herculean task for any development team. The value proposition of a component-based architecture is that it boosts application development time and reduces code fragmentation.

Creating UI Components in SVG

I’m thoroughly convinced that SVG unlocks a whole entire world of building interfaces on the web. It might seem daunting to learn SVG at first, but you have a spec that was designed to create shapes and yet, still has elements, like text, links, and aria labels available to you. You can accomplish some of the same effects in CSS, but it’s a little more particular to get positioning just right, especially across viewports and for responsive development.

What’s special about SVG is that all the positioning is based on a coordinate system, a little like the game Battleship. That means deciding where everything goes and how it’s drawn, as well as how it’s relative to each other, can be really straightforward to reason about. CSS positioning is for layout, which is great because you have things that correspond to one another in terms of the flow of the document. This otherwise positive trait is harder to work with if you’re making a component that’s very particular, with overlapping and precisely placed elements.

Truly, once you learn SVG, you can draw anything, and have it scale on any device. Even this very site uses SVG for custom UI elements, such as my avatar, above (meta!).

That little half circle below the author image is just SVG markup.

We won’t cover everything about SVGs in this post (you can learn some of those fundamentals here, here, here and here), but in order to illustrate the possibilities that SVG opens up for UI component development, let’s talk through one particular use case and break down how we would think about building something custom.

The timeline task list component

Recently, I was working on a project with my team at Netlify. We wanted to show the viewer which video in a series of videos in a course they were currently watching. In other words, we wanted to make some sort of thing that’s like a todo list, but shows overall progress as items are completed. (We made a free space-themed learning platform and it’s hella cool. Yes, I said hella.)

Here’s how that looks:

So how would we go about this? I’ll show an example in both Vue and React so that you can see how it might work in both frameworks.

The Vue version

We decided to make the platform in Next.js for dogfooding purposes (i.e. trying out our own Next on Netlify build plugin), but I’m more fluent in Vue so I wrote the initial prototype in Vue and ported it over to React.

Here is the full CodePen demo:

Let’s walk through this code a bit. First off, this is a single file component (SFC), so the template HTML, reactive script, and scoped styles are all encapsulated in this one file.

We’ll store some dummy tasks in data, including whether each task is completed or not. We’ll also make a method we can call on a click directive so that we can toggle whether the state is done or not.

<script>
export default {
  data() {
    return {
      tasks: [
        {
          name: 'thing',
          done: false
        },
        // ...
      ]
    };
  },
  methods: {
    selectThis(index) {
      this.tasks[index].done = !this.tasks[index].done
    }
  }
};
</script>

Now, what we want to do is create an SVG that has a flexible viewBox depending on the amount of elements. We also want to tell screen readers that this a presentational element and that we will provide a title with a unique id of timeline. (Get more information on creating accessible SVGs.)

<template>
  <div id="app">
    <div>
      <svg :viewBox="`0 0 30 ${tasks.length * 50}`"
           xmlns="http://www.w3.org/2000/svg" 
           width="30" 
           stroke="currentColor" 
           fill="white"
           aria-labelledby="timeline"
           role="presentation">
           <title id="timeline">timeline element</title>
        <!-- ... -->
      </svg>
    </div>
  </div>
</template>

The stroke is set to currentColor to allow for some flexibility — if we want to reuse the component in multiple places, it will inherit whatever color is used on the encapsulating div.

Next, inside the SVG, we want to create a vertical line that’s the length of the task list. Lines are fairly straightforward. We have x1 and x2 values (where the line is plotted on the x-axis), and similarly, y1 and y2.

<line x1="10" x2="10" :y1="num2" :y2="tasks.length * num1 - num2" />

The x-axis stays consistently at 10 because we’re drawing a line downward rather than left-to-right. We’ll store two numbers in data: the amount we want our spacing to be, which will be num1, and the amount we want our margin to be, which will be num2.

data() {
  return {
    num1: 32,
    num2: 15,
    // ...
  }
}

The y-axis starts with num2, which is subtracted from the end, as well as the margin. The tasks.length is multiplied by the spacing, which is num1.

Now, we’ll need the circles that lie on the line. Each circle is an indicator for whether a task has been completed or not. We’ll need one circle for each task, so we’ll use v-for with a unique key, which is the index (and is safe to use here as they will never reorder). We’ll connect the click directive with our method and pass in the index as a param as well.

CIrcles in SVG are made up of three attributes. The middle of the circle is plotted at cx and cy, and then we draw a radius with r. Like the line, cx starts at 10. The radius is 4 because that’s what’s readable at this scale. cy will be spaced like the line: index times the spacing (num1), plus the margin (num2).

Finally, we’ll put use a ternary to set the fill. If the task is done, it will be filled with currentColor. If not, it will be filled with white (or whatever the background is). This could be filled with a prop that gets passed in the background, for instance, where you have light and dark circles.

<circle 
  @click="selectThis(i)" 
  v-for="(task, i) in tasks"
  :key="task.name"
  cx="10"
  r="4"
  :cy="i * num1 + num2"
  :fill="task.done ? 'currentColor' : 'white'"
  class="select"/>

Finally, we are using CSS grid to align a div with the names of tasks. This is laid out much in the same way, where we’re looping through the tasks, and are also tied to that same click event to toggle the done state.

<template>
  <div>
    <div 
      @click="selectThis(i)"
      v-for="(task, i) in tasks"
      :key="task.name"
      class="select">
      {{ task.name }}
    </div>
  </div>
</template>

The React version

Here is where we ended up with the React version. We’re working towards open sourcing this so that you can see the full code and its history. Here are a few modifications:

  • We’re using CSS modules rather than the SCFs in Vue
  • We’re importing the Next.js link, so that rather than toggling a “done” state, we’re taking a user to a dynamic page in Next.js
  • The tasks we’re using are actually stages of the course —or “Mission” as we call them — which are passed in here rather than held by the component.

Most of the other functionality is the same :)

import styles from './MissionTracker.module.css';
import React, { useState } from 'react';
import Link from 'next/link';

function MissionTracker({ currentMission, currentStage, stages }) {
 const [tasks, setTasks] = useState([...stages]);
 const num1 = [32];
 const num2 = [15];

 const updateDoneTasks = (index) => () => {
   let tasksCopy = [...tasks];
   tasksCopy[index].done = !tasksCopy[index].done;
   setTasks(tasksCopy);
 };

 const taskTextStyles = (task) => {
   const baseStyles = `${styles['tracker-select']} ${styles['task-label']}`;

   if (currentStage === task.slug.current) {
     return baseStyles + ` ${styles['is-current-task']}`;
   } else {
     return baseStyles;
   }
 };

 return (
   <div className={styles.container}>
     <section>
       {tasks.map((task, index) => (
         <div
           key={`mt-${task.slug}-${index}`}
           className={taskTextStyles(task)}
         >
           <Link href={`/learn/${currentMission}/${task.slug.current}`}>
             {task.title}
           </Link>
         </div>
       ))}
     </section>

     <section>
       <svg
         viewBox={`0 0 30 ${tasks.length * 50}`}
         className={styles['tracker-svg']}
         xmlns="http://www.w3.org/2000/svg"
         width="30"
         stroke="currentColor"
         fill="white"
         aria-labelledby="timeline"
         role="presentation"
       >
         <title id="timeline">timeline element</title>

         <line x1="10" x2="10" y1={num2} y2={tasks.length * num1 - num2} />
         {tasks.map((task, index) => (
           <circle
             key={`mt-circle-${task.name}-${index}`}
             onClick={updateDoneTasks(index)}
             cx="10"
             r="4"
             cy={index * +num1 + +num2}
             fill={
               task.slug.current === currentStage ? 'currentColor' : 'black'
             }
             className={styles['tracker-select']}
           />
         ))}
       </svg>
     </section>
   </div>
 );
}

export default MissionTracker;

Final version

You can see the final working version here:

This component is flexible enough to accommodate lists small and large, multiple browsers, and responsive sizing. It also allows the user to have better understanding of where they are in their progress in the course.

But this is just one component. You can make any number of UI elements: knobs, controls, progress indicators, loaders… the sky’s the limit. You can style them with CSS, or inline styles, you can have them update based on props, on context, on reactive data, the sky’s the limit! I hope this opens some doors on how you yourself can develop more engaging UI elements for the web.


The post Creating UI Components in SVG appeared first on CSS-Tricks.

You can support CSS-Tricks by being an MVP Supporter.

Hooks by Example: Convert a Tesla Battery Range Calculator to Functional Components

In this tutorial, we started with an existing React-app with which we can calculate how much range the Tesla has under different circumstances. The range of a battery depends on the speed, the outside temperature, the climate and the wheel size.

In order to learn React hooks more thoroughly I converted this existing React-app from React Class Components to one with just React Functional Components. That is the goal of this tutorial!

Top 4 Gantt Chart Solutions for React

React has gained considerable popularity among both web enthusiasts and large enterprises that value high performance and reliable web applications. Currently, there’s no shortage of React components of different levels of complexity. Today, we’d like to shed some light on a specific kind of such tools — React Gantt charts. 

To make this article useful for the broadest possible public, we’ll focus on two types of Gantt charts. First of all, we’ll take a look at lightweight charts that provide basic functionality and can fit small companies. After that, we’ll consider those that offer dozens of features and can be a good choice for large companies. Such management tools suit well for complex projects and help to ensure that no detail will escape the attention of a project manager.

Considerations for Creating a Card Component

Here's a Card component in React:

const Card = props => {
  return(
    <div className="card">
      <h2>{props.title}</h2>
      <p>{props.content}</p>
    </div>
  )
}

It might be pretty useful! If you end up using this thing hundreds of times, now you have the ability to refactor a little bit of HTML across your app very easily. You already have that power in CSS because of the class name there, but now you have HTML control too. Feel it.

But wait. Maybe this is limiting... an <h2>? What if that really should have been an <h4> in some usages? What's the approach there? Maybe an API of sorts?

const Card = props => {
  return(
    <div className="card">
      {props.type === "big" && <h2>{props.title}</h2>}
      {props.type !== "big" && <h4>{props.title}</h4>}
      <p>{props.content}</p>
    </div>
  )
}

Or maybe we force a level to be passed in?

const Card = props => {
  const HeaderTag = `h${props.level}`;
  return(
    <div className="card">
      <HeaderTag>{props.title}</HeaderTag>
      <p>{props.content}</p>
    </div>
  )
}

Or maybe that header is its own component?

And a forced paragraph tag wrapper around that content? That's a little limiting, isn't it? Maybe that should be a <div> so that it could take arbitrary HTML inside it, like multiple paragraphs.

const Card = props => {
  return(
    <div className="card">
      <WhateverHeader>{props.title}</WhateverHeader>
      <div>{props.content}</div>
    </div>
  )
}

Actually, why even ask for content with props? It's probably easier to deal with a child component, especially if what is coming over is HTML.

const Card = props => {
  return(
    <div className="card">
      <WhateverHeader>{props.title}</WhateverHeader>
      {children}
    </div>
  )
}

There are more assumptions we could challenge too. Like card only for a class name... shouldn't that be more flexible?

const Card = props => {
  const classes = `card ${props.className}`;
  return(
    <div className={classes}>
      <WhateverHeader>{props.title}</WhateverHeader>
      {children}
    </div>
  )
}

I'm still forcing card there. We could drop that so that it isn't assumed, or build another aspect of the Card API providing a way to opt-out of it.

Even the <div> wrapper is presumptuous. Perhaps that tag name could be passed in so that you could make it into a <section> or <article> or whatever you want.

Maybe it's better to assume nothing actually, making our card like this:

const Card = () => {
  return(
    <>
      {children}
    </>
  )
}

That way anything you want to change, you have the freedom to change. At least then it's flexibility while being relaxed about it, rather than this kind of "flexibility":

<Card
  parentTag="article"
  headerLevel="3"
  headerTitle="My Card"
  contentWrapper="div"
  cardVariation="extra-large"
  contentContent=""
  this=""
  little=""
  piggy=""
  went=""
  to=""
  market=""
/>

That kind of extreme-API-zying just happens sometimes when you're grasping for control and flexibility at the same time.

A component model with no guidance can lead to over-componentization also, like perhaps:

const Card = props => {
  return(
    <CardWrapperTheme>
      <CardWrapper>
        <CardTitle />
        <CardContent />
        <CardFooter />
      </CardWrapper>
    </CardWrapperTheme>
  )
}

There might be perfectly good reasons to do that, or it might be the result of componentizing because it's "free" and just feels like that's how things are done in an architecture that supports it.

There is a balance. If a component is too strict, it runs the risk of that people won't use them because they don't give them what they need. And if they're too loose, people might not use them because they don't provide any value, and, even if they did use them, they don't offer any cohesiveness.

I don't have any answers here, I just find it fascinating.

The post Considerations for Creating a Card Component appeared first on CSS-Tricks.

Vue.js Single-File JavaScript Components in the Browser

Browser support for native JavaScript modules is finally happening. The latest versions of Safari and Chrome support them, Firefox and Edge will soon too.

One of the cool things about JavaScript modules for Vue.js users is that they allow you to organize your components into their own files without any kind of build step required.

Third-Party Components at Their Best

I'm a fan of the componentization of the web. I think it's a very nice way to build a website at just about any scale (except, perhaps, the absolute most basic). There are no shortage of opinions about what makes a good component, but say we scope that to third-party for a moment. That is, components that you just use, rather than components that you build yourself as part of your site's unique setup.

What makes a third-party component good? My favorite attribute of a third-party component is when it takes something hard and makes it easy. Particularly things that recognize and properly handle nuances, or things that you might not even know enough about to get right.

Perhaps you use some component that does pop-up contextual menus for you. It might perform browser edge detection, such as ensuring the menu never appears cut off or off-screen. That's a tricky little bit of programming that you might not get right if you did it yourself — or even forget to do.

I think of the <Link /> component that React Router has or what's used on Gatsby sites. It automatically injects aria-current="page" for you on the links when you're on that page. You can and probably should use that for a styling hook! And you probably would have forgotten to program that if you were handling your own links.

In that same vein, Reach UI Tabs have rigorous accessibility baked into them that you probably wouldn't get right if you hand-rolled them. This React image component does all sorts of stuff that is relatively difficult to pull off with images, like the complex responsive images syntax, lazy loading, placeholders, etc. This is, in a sense, handing you best practices for "free."

Here's a table library that doesn't even touch UI for you, and instead focuses on other needs you're likely to have with tables, which is another fascinating approach.

Anyway! Here's what y'all said when I was asking about this. What makes a third-party component awesome? What do the best of them do? (besides the obvious, like good docs and good accessibility)? Some of these might be at-odds. I'm just listing what people said they like.

  • Plug-and-play. It should "just work" with minimal config.
  • Lots of editable demos
  • Highly configurable
  • "White label" styling. Don't bring too strong of design choices.
  • Styled via regular CSS so you can BYO own styling tools
  • Fast
  • Small
  • Is installable via a package manager
  • Can be manually instantiated
  • Can be given a DOM node where it can go
  • Follows a useful versioning scheme
  • Is manintained, particularly for security
  • Has a public roadmap
  • Is framework-agnostic
  • Doesn't have other dependencies
  • Uses intuitive naming conventions
  • Supports internationalization
  • Has lots of tests

Anything you'd add to that list?

The post Third-Party Components at Their Best appeared first on CSS-Tricks.

Vue Tutorial 7 – Components

Granny is delighted! Your latest update of her web app really impressed her. She can now comfortably manage guests for her upcoming birthday party, knowing that she will not accidentally submit invalid data to the table, thanks to our frontend validation. However, she also mentioned something about reviewing your code and asked about the reusability of components within the app. This sent a chill down your spine. It’s time to learn about reusable Vue Components…

Vue Components

The more you program in Vue, the more thankful you will be for the Vue component system. Components are not very useful in small applications that we covered in this series of tutorials up to now. It is really important to understand how they work and what they are as they become very useful when building large applications, which you will inevitably face in your programming career.

Vue Tutorial 8 — Component Events

In our pursuit of being able to handle large, scalable, maintainable web apps we became familiar with and learned about Vue Components. We learned how to:

  • Define a component.
  • Instantiate a component.
  • Pass data to a component using props.

In this tutorial, we’ll learn how to trigger events in the app based on some user action registered by our “child” component. 

Knowing What To Test — Vue Component Unit Testing

Do you know what to test?
You may also like: How and Why We Moved to Vue.js

The most common question about unit testing Vue components I see out there is "what exactly should I test?"

While it's possible to test either too much or too little, my observation is that developers will usually err on the side of testing too much. After all, no one wants to be the guy or girl whose under-tested component crashed the app in production.

Streaming Live Updates From a Reactive Spring Data Repository

Here's an example implementation of streaming updates from a database to other components

This post details a naive implementation of streaming updates from a database to any other components that are interested in that data. More precisely, we look at how to alter a Spring Data R2DBC repository to emit events to relevant subscribers.

You may also like: Reactive Streams With Spring Data and MongoDB

A little bit of background knowledge of R2DBC and Spring will be helpful for this post. My previous writings: Asynchronous RDBMS access with Spring Data R2DBC and Spring Data R2DBC for Microsoft SQL Server — these should help in that regard.

Components, yo.

I see VuePress just went 1.0. Explained simply, it's a static site generator based on Vue. But of course, you work in Vue, which means you work in components.

All the modern JavaScript frameworks are component-based. Even when they disagree with each other about specific things (like how Svelte requires compilation), they all seem to agree on the model of working in components. React is all components. A popular static site generator for React is Next.js. The Vue version of that is Nuxt.js.

Then there is Gatsby which is all React. (Listen to our latest ShopTalk Show as we discuss it.) Gridsome seems like the most 1-to-1 comparison in Vue-land, the notable comparison being how they both are designed to suck in data from any source. Components though, of course. I'm not sure there is a flagship Angular-based static site generator, but they are out there, and Angular is components all the way down.

Components are so ubiquitous that perhaps you don't even think about it anymore. But you might feel it, particularly if you jump back and forth between projects that aren't component-driven. WordPress development, generally, I feel, isn't component driven. Sure, you've got your header.php and footer.php files and such. You can break those apart however you want, but it's rather ad-hoc. You aren't explicitly building components and feeding those components local data and testing them as such. (You can get a lot closer with something like Timber.)

Building front-ends out of server-side code is absolutely fine. Server-side rendering is rife with advantages. But server-side languages don't seem to have embraced components the way JavaScript has. And since everyone seems to like components (front-end devs obviously love it, designers think that way anyway, back-end devs understand it...) it's no surprise to me to see this surge of beloved projects build server-side (or build-time) generated sites from JavaScript, simply because it's component-based and components are just a good idea.

The post Components, yo. appeared first on CSS-Tricks.

10 Basic Facts About Kubernetes That You Didn’t Know

Kubernetes is a growing trend. In recent years, K8s technology has experienced a rapid rise from a small open source Google project to the main project of the Cloud Native Computing Foundation (CNCF).

Nowadays, many organizations and companies are using it to automate the management of containerized applications. But there are a lot of questions around Kubernetes, and in this article, I will try to answer the most popular ones.

What is Selenium? Getting Started With Selenium Automation Testing

Selenium has become very popular among testers because of the various advantages it offers. When we talk about automation testing, the first thing that often comes to our mind is our favorite automation testing tool. Selenium won the hearts of many testers and developers with its simplicity, availability, and ease of use. With its advent in 2004, Selenium made the life of automation testers easier and is now a favorite tool for many automation testers. 

What is Selenium?

Selenium was invented with the introduction of a basic tool named as “JavaScriptTestRunner,” by Jason Huggins at ThoughtWorks to test their internal Time and Expenses application. Now it has gained popularity among software testers and developers as an open source portable automation testing framework. It has the capability to automate browsers with specific browser bindings for automating web applications for testing purposes. It is a suite of four tools designed for different purposes. Let’s get to know Selenium in detail and the different tools that it offers.