How to Restore Poison Messages (Or Dead Letters) From Memphis Broker vs RabbitMQ

What Is Service-Oriented Architecture?

Service Oriented Architecture (SOA) involves splitting different parts of your application into services. That way, you can have services for Authentication, Batch-Processing, Managing Videos, Notifications, etc.

Separating core functionalities into services help your platform to scale appropriately. You also get to enjoy the benefit of the whole system not breaking down when one service malfunctions. In addition, you can improve each service without tampering with others.

Flutter For Front-End Web Developers

I started as a front-end web developer and then became a Flutter developer. I think there were some concepts that helped me adopt Flutter easier. There were also some new concepts that were different.

In this article, I want to share my experience and inspire anyone feeling paralyzed with choosing one ecosystem over the other by showing how concepts transfer over and any new concepts are learnable.

Concepts That Transferred Over

This section shows places where front-end web development and Flutter resemble. It explains skills that you already have that are an advantage to you if you start Flutter.

1. Implementing User Interfaces (UIs)

To implement a given UI in front-end web, you compose HTML elements and style them with CSS. To implement UIs in Flutter, you compose widgets and style them with properties.

Like CSS, the Color class in Dart works with “rgba” and “hex”. Also like CSS, Flutter uses pixels for space and size units.

In Flutter, we have Dart classes and enums for almost all CSS properties and their values. For example:

Flutter also has Column and Row widgets. These are the Flutter equivalent for display: flex in CSS. To configure justify-content and align-items styles, you use MainAxisAlignment and CrossAxisAlignment properties. To adjust the flex-grow style, wrap the affected child(ren) widget(s) of the Column/Row, in an Expanded or Flexible.

For the advanced UIs, Flutter has the CustomPaint class – it is to Flutter what the Canvas API is to web development. CustomPaint gives you a painter to draw any UI as you wish. You will usually use CustomPaint when you want something that is really complex. Also, CustomPaint is the go-to way when a combination of widgets doesn’t work.

2. Developing For Multiple Screen Resolutions

Websites run on browsers and mobile apps run on devices. As such, while developing for either platform, you have to keep the platform in mind. Each platform implements the same features (camera, location, notifications, etc.) in different ways.

As a web developer, you think about your website’s responsiveness. You use media queries to handle what your website looks like in smaller and wider screens.

Coming over from mobile web development to Flutter, you have the MediaQuery helper class. The MediaQuery class gives you the current device orientation (landscape or portrait). It also gives you the current viewport size, the devicePixelRatio, among other device info. Together, these values give you insights about the mobile device’s configuration. You can use them to change what your mobile app looks like at various screen sizes.

3. Working with Debuggers, Editors, and Command Line Tools

Desktop browsers have developer tools. These tools include an inspector, a console, a network monitor, etc. These tools improve the web development process. Flutter too has its own DevTools. It has its widget inspector, debugger, network monitor, among other features.

IDE support is also similar. Visual Studio Code is one of the most popular IDE for web development. There are many web-related extensions for VS Code. Flutter too supports VS Code. So while transitioning, you don’t need to change IDE. There are Dart and Flutter extensions for VS Code. Flutter also works well with Android Studio. Both Android Studio and VS Code support Flutter DevTools. These IDE integrations make Flutter tooling complete.

Most front-end JavaScript frameworks come with their command-line interface (CLI). For example: Angular CLI, Create React App, Vue CLI, etc. Flutter also comes with an exclusive CLI. The Flutter CLI permits you to build, create, and develop Angular projects. It has commands for analyzing and testing Flutter projects.

Concepts That Were New

This section talks about Flutter-specific concepts that are easier or non-existent in web development. It explains ideas you should keep in mind as you enter Flutter.

How To Handle Scrolling

When developing for the web, default scrolling behavior is handled by web browsers. Yet, you are free to customize scrolling with CSS (using overflow).

This is not the case in Flutter. Widget groups don’t scroll by default. When you sense that widget groups might overflow, you have to proactively configure scrolling.

In Flutter, you configure scrolling by using peculiar widgets that permit scrolling. For example: ListView, SingleChildScrollView, CustomScrollView, etc. These scrollable widgets give you great control over scrolling. With CustomScrollView, you can configure expert and complex scroll mechanisms within the application.

On Flutter’s side, using ScrollViews is inevitable. Android and iOS have ScrollView and UIScrollView to handle scrolling. Flutter needs a way to unify the rendering and developer experience by using its ScrollViews, too.

It may help to stop thinking about the flow of document structure and instead consider the application as an open canvas for a device’s native painting mechanisms.

2. Setting Up Your Development Environment

To create the simplest website, you can create a file with a .html extension and open it in a browser. Flutter is not that simple. To use Flutter, you need to have installed the Flutter SDK and have configured Flutter for a test device. So if you want to code Flutter for Android, you need to set up the Android SDK. You will also need to configure at least one Android device (an Android Emulator or a physical device).

This is the same case for Apple devices (iOS and macOS). After installing Flutter on a Mac, you still need to set up Xcode before going further. You will also need at least an iOS simulator or an iPhone to test Flutter on iOS. Flutter for desktop is also a considerable setup. On Windows, you need to set up the Windows Development SDK with Visual Studio (not VS Code). On Linux, you will install more packages.

Without extra setup, Flutter works on browsers. As a result, you could overlook the extra setup for target devices. In most cases, you would use Flutter for mobile app development. Hence, you would want to setup at least Android or iOS. Flutter comes with the flutter doctor command. This command reports the status of your development setup. That way, you know what to work on, in the setup, if need be.

This doesn’t mean that development in Flutter is slow. Flutter comes with a powerful engine. The flutter run command permits hot-reloading to the test device while coding. But then you will need to press R to actually hot-reload. This is not an issue. Flutter’s VS Code extension permits auto-hot-reload on file changes.

3. Packaging and Deployment

Deploying websites is cheaper and easier compared to deploying mobile applications. When you deploy websites, you access them through domain names. These domain names are usually renewed annually. However, they are optional.

Today, many platforms offer free hosting.

For example: DigitalOcean gives you a free subdomain on .ondigitalocean.com.

You can use these domains if you are building a documentation website. You can also use them when you are not worried about branding.

In Flutter’s world with mobile applications, you usually in most cases deploy your app to two places.

You have to register a developer account on each of these platforms. Registering a developer account requires a fee or subscription and identity verification.

For App Store, you need to enroll for the Apple Developer program. You need to maintain an annual subscription of $99. For Google Play, you need to make a one-time $25 payment for the account.

These stores review every app reviewed before it goes live.

Also bear in mind that users don’t easily consume app updates. Users must explicitly update installed applications. This is in contrast to the web where everyone just gets to see the latest deployed version of a website.

Managing deployed applications is relatively more demanding than managing deployed websites. However, this shouldn’t scare you. After all, there are millions of apps deployed on either stores so you can add yours, too.

Additional Thoughts On Flutter

Flutter is a cross-platform tool to build desktop, mobile, or web applications. Flutter apps are pixel-perfect. Flutter paints the same UI on each app irrespective of the target platform. This is because each Flutter app contains the Flutter engine. This engine renders the Flutter UI code. Flutter provides a canvas for each device and allows you to paint as you want. The engine communicates with the target platform to handle events and interactions.

Flutter is efficient. It has high-performance levels. This is because it is built with Dart and it leverages Dart’s features.

With these many benefits, Flutter is a good choice for many applications. Cross-platform apps save money and time during production and maintenance. However, Flutter (and cross-platform solutions) might not be an optimum choice in some cases.

Don’t use Flutter if you want users to use platform developer tools with your application. Platform developer tools here mean device-specific tools like Android developer options. It also includes browser developer tools.

Don’t use Flutter for web if you expect browser extensions to interact with the website.

Also, don’t use Flutter for content-heavy websites.

Conclusion

This was a review of skills that carry over from front-end web development to working with Flutter. We also discussed app development concepts that you have to learn as a web developer.

Flutter is simpler for web developers because they both involve implementing UIs. If you start Flutter, you will find out that it gives you a good developer experience. Give Flutter a try! Use it to build mobile apps and of course, showcase what you build.

Cheers!


Flutter For Front-End Web Developers originally published on CSS-Tricks, which is part of the DigitalOcean family. You should get the newsletter.

Why I Chose Angular to Build a URL Shortener

URL Shorteners are tools we use to make links shorter than they actually are. With a URL Shortener, you can transform a long link (maybe for a registration form or article) into a shorter version.

Behind the scenes, the long and short versions of a given link have been stored in some database. Then when a user visits the short link in a browser, the URL Shortener will redirect the user to the long version of the link (where the actual content is found).

Shortened links from URL shorteners are commonly used when the long version of those links would be too long to use. Sharing links on social media or when designing flyers and adverts is a popular use of URL shorteners.

For one of my projects, I created a personal URL shortener. My intention was to use it for links to articles I write or videos I make. I used Firebase to build the backend of the URL shortener. Specifically, I used the Firestore database to store short and long versions of any given link.

To create links, I had to use the Firebase console. This wasn’t a problem but it was cumbersome for the high frequency of editing links. The user experience (UX) was not ideal. Now I was faced with a problem. How do I create, edit, and delete links? I needed to build a frontend for the URL shortener. I needed a website for this.

In this article, we’ll review the available tools used for building this frontend, decision choices, and factors that influenced why they were made.

Problem statement

The project requirements were:

  • Platform/Architecture. The engineering and structure of the coding process.
  • UI Toolkit. Components to use for the various parts of the UI.
  • Convenience. Building the backend was not tough, so this frontend should not be either. I wanted clean code and fast development.

The First Decision Choice: Angular

Many ideas come to mind when starting out to build a frontend. In a broad sense, we could categorize frontend building options into 3 platforms:

  1. Website Builders – like WordPress, Wix, Squarespace, etc.
  2. Vanilla Building – using plain HTML, CSS, and JavaScript.
  3. JavaScript Framework – like React, Vue, Angular, etc.

In my experience, website builders provide a very restricted collection of widgets, components, and templates. Most website builders don’t provide an easy way to integrate an entire custom backend like Firebase. While it is possible to build impressive sites by connecting these pieces together, the degree of complexity of my project was likely beyond what these services typically provide.

Using the no-framework style or vanilla would have been a possibility. However, the deciding factor that made me not choose the pure vanilla route was that the latest non-CDN version of the Firebase JavaScript SDK (Version 9) is designed with installation via npm or yarn and module bundling in mind.

JavaScript frameworks handle frontend core parts (like routing, backend-linking, etc.) to reduce developer efforts. There are many of them and choosing which to use seemed to be a harder choice to make.

There are many JavaScript frameworks for frontend development. Examples include Angular, React, Vue, etc.

Of the available frameworks, I have the most familiarity with Angular. This is because I have used it on previous projects like:

  • Choir Carol Quiz: Portal where Quiz participants competed in two online rounds of timed multiple choice questions on select Bible chapters.
  • Genesys AE-FUNAI Community: Custom Form where members of Genesys Campus Club AE-FUNAI (my community) report their progress and share their achievements.
  • Tutorial Management System: Simple session management dashboard between students and tutors.

This familiarity allows me to build quickly with Angular. Being able to build quickly should not be underestimated.

I chose Angular because of its Object-Oriented Programming (OOP) ability. OOP is a programming paradigm that focuses more on classes, data, or state being managed, rather than on the logic controlling the data, as is the case with functional programming. Separation of concerns is one advantage of using OOP. In other words, OOP permits encapsulation. It permits you to scope aspects of the program to peculiar domains or classes.

In Angular, components (and their lifecycle methods) are scoped to TypeScript classes. This makes you think the OOP way. The OOP advantage reflects in how Angular components serve as reusable UI units in the Angular framework. That way you see an Angular component as some self-sufficient entity that is yet part of a whole. This makes frontend development easy as various parts of the frontend app can be scoped to components and hence can be used where needed.

I also chose Angular because it uses TypeScript. TypeScript is JavaScript with features of a typed programming language. Typing in this context means a variable can’t change the kind of value it holds all through its life. For example, a variable holding a string will not all of a sudden hold a number while it is used in that program. Typing increases code quality and reduces bugs.

As a result of its type system, TypeScript reduces the time spent debugging Angular apps. It gives developer experience as the developer will have more time to build the frontend app. Debugging also becomes easy for the developer.

Note: Here is more on Object-Oriented Programming with TypeScript

Still, on Angular’s advantages, Angular apps come as a complete setup. They handle important features like bundling CSS preprocessors or Angular services by themselves. That said, when using Angular, you don’t need to configure each library independently, Angular takes care of this.

An Angular service is what Angular uses to configure dependency injection. In simple terms, dependency injection is providing an application with what it needs to function (dependencies) without the application having to take care of how the dependencies were gotten. I also chose Angular because of its out-of-the-box handling of services. So Firebase, for example, will be auto-provided to all Angular components that need without any extra configuration.

The benefits of Object-Oriented Programming, TypeScript, and dependency injection make Angular a go-to for frontend development. Coupled with the fact I was already familiar with Angular, Angular was more convenient for this URL shortener project.

Angular articles on CSS-Tricks are also part of the story. They gave me more confidence with using Angular.

The Second Decision Choice: Material Design

After choosing Angular, my next task was to consider how I would handle the user interface (UI).

I could ignore and do vanilla CSS instead but why reinvent the wheel? After all, this would defeat the reason for using a JavaScript framework – convenience.

With choosing a UI toolkit, there seems to be an ocean of options. To name a few, one can use Bootstrap, Bulma, Semantic UI, Tailwind, etc. Each toolkit has its own specifications and motivations.

For the use case of my project, Material Design led the pack.

One of the most important factors was the support for Angular and Material Design. There is an entire Angular-only specification for Material on material.angular.io (that is as a subdomain to the Angular docs itself).

I settled for Material Design because it focuses on components. Unlike other CSS frameworks, it doesn’t have CSS utility classes. This was okay because I only wanted some component kit (buttons, icons, inputs, sidebars, snack bars, etc.) Material also adds animations, ripple, and shadow effects by itself; making it more convenient than other libraries.

Furthermore, Angular Material has out-of-the-box theming support, when initializing Angular Material, you have the option of choosing a pre-defined theme for the entire Angular app or creating a custom one.

Screenshot of installing Angular Material and selecting a theme.

For the sake of convenience, I chose a dark theme while setting up Angular Material.

The Third Decision Choice: Reactive Forms

With a framework and toolkit decided, I turned my attention to one of the most important features of the URL shortener. The core of the URL shortener’s frontend is the form for creating and updating links.

Let’s call this form the links editor. The links editor form has only two inputs, one for the short version of a link and the other for the full URL the short version will redirect to.

For managing forms, Angular comes with two mechanisms. So instead of creating a form and handling its validation and submission as is done in vanilla HTML and JavaScript, you have to use either of the two ways Angular provides. The two methods are:

  1. Template-driven forms
  2. Reactive forms

Template-driven forms as the name imply, involve the HTML (template) code controlling the greater part of the Angular form. This approach is preferable when your form does not do much or is for one-time usage.

Reactive forms, on the other hand, provide a model-driven approach to handling form inputs whose values change over time. I needed reactive forms because it is the same form that I will use to edit different links at any point in time.

Note: Here is more material on using Reactive Forms.

At this point, the benefits of previous choices began playing out. Angular Material has form-field components. The form-field wraps the input as a component and provides animations, ripple effects, and error messages if necessary.

Animated gif of short and long URLs entered into a form.

So I used it for the two inputs of the editor form.

The Fourth Decision Choice: Angular Material Bottom Sheet and Drawer

The final decision involved how to improve the user experience. The URL shortener would need other features like viewing all created links and their analytics. These features would require space on the screen that required me to rethink if there were better solutions to display the links editor form to the user.

If the user has no current need for the links editor form, it makes sense for the links editor form to not always be in view. This would free up space on the UI for other elements.

However, splitting this user experience into two separate pages felt disruptive. Instead, to open the links editor when needed, I added a floating action button on the page for creating links. When clicked, the button will cause the editor form to be opened in any fitting UI component.

bottom sheet, as the name implies, is a UI component that opens from the bottom of the screen. It has interactive content the user can work it. It overlays the current view of a mobile screen (but doesn’t fully block it).

Animated gif of interacting with a form displayed in a Bottom Sheet.

Bottom sheets are usually used in place of pop-ups if the user will spend a long time interacting with their content. So, bottom sheets are a good fit to open the editor on mobile screens. However, interacting with a bottom sheet is hard when the screen is wide. I needed a different UI component for the links editor form on wide screens.

Drawers open by the side. Using a drawer to open the links editor form on a wide screen was the go-to option. Drawers won’t be good for the editor on mobile screens. The screen’s width would be relatively small and the drawer might completely block the screen (which is not a desirable UX).

Animated gif of interacting with a form displayed in a Drawer.

I selected these two UI components from Material Design for the form to have some responsive effect. So whether on my phone or laptop creating links would be done in a fitting UI component.

In the code, Angular checks if the device is of small screen width. If so, it opens a bottom sheet containing the links editor form. On the other hand, if the screen is wide, Angular opens a drawer containing the same form.

Using these two components brought about a minor complication. If my phone is rotated or my laptop’s browser window’s width is reduced, the form opens on the contrary UI component. That is instead of opening in a drawer in a laptop, it will open in a bottom sheet (because the browser’s width was reduced).

Maintenance, Future-proofing, Future Releases

When I thought of opportunities to iterate on this project, I ran into limitations with the current use case designed to support a single administrator. But with authentication and user accounts, it can support additional users managing links and accessing analytics.

In that case, the above choices of components will still be appropriate. The links editor is responsive so on any device, users will have a good user experience.

If I had to do it all over again, I think I would have tried out the vanilla method. Building entirely without any helpers like Angular, Material, or UI components. I would try building from scratch in HTML, CSS, and JavaScript and see if I didn’t lose out on convenience as I thought I would.

Conclusion

You can access the final Angular code here on GitHub.

This was a review of some of the main choices I made when developing my project. Of course, there is more to building the frontend of a URL shortener. But for a start, these UI components made the building process convenient. They made the links editor form responsive and could be of similar use to you in your projects (not necessarily a URL shortener).

There are many other UI components from various libraries you can use for any such project. But as with my case, if convenience is a deciding factor, you would make the right decision choice that would be fitting for the UI.

Ultimately, what shaped my decisions was understanding what my project required, knowledge of tools I had used from previous projects, and expectations with time constraints. My past experience – successes and mistakes – helped guide me too.

Cheers!


Why I Chose Angular to Build a URL Shortener originally published on CSS-Tricks. You should get the newsletter.